Modeling the possible role of iodine oxides in atmospheric new particle formation

Author:

Pechtl S.,Lovejoy E. R.,Burkholder J. B.,von Glasow R.

Abstract

Abstract. We studied the possible role of iodine oxides in atmospheric new particle formation with the one-dimensional marine boundary layer model MISTRA, which includes chemistry in the gas and aerosol phase as well as aerosol microphysics. The chemical reaction set focuses on halogen (Cl-Br-I) chemistry. We included a two-step nucleation parameterization, where in the first step, the "real" nucleation process is parameterized, i.e., the formation of cluster-sized nuclei via homogeneous condensation of gases. We considered both ternary sulfuric acid-ammonia-water nucleation and homomolecular homogeneous OIO nucleation. For the latter, we derived a parameterization based on combined laboratory-model studies. The second step of the nucleation parameterization treats the "apparent" nucleation rate, i.e., the growth of clusters into the model's lowest size bin by condensable vapors such as OIO. We compared different scenarios for a clean marine versus a polluted continental background atmosphere. In every scenario, we assumed the air to move, independent of its origin, first over a coastal region (where it is exposed to surface fluxes of different reactive iodine precursors) and later over the open ocean. According to these sensitivity studies, in the clean marine background atmosphere OIO can be responsible for both homogeneous nuclei formation and the subsequent growth of the clusters to detectable sizes. In contrast to this, in the continental case with its higher levels of pollutants, gas phase OIO mixing ratios, and hence related nucleation rates, are significantly lower. Compared to ternary H2SO4-NH3-H2O nucleation, homogeneous OIO nucleation can be neglected for new particle formation in this case, but OIO can contribute to early particle growth, i.e., to apparent nucleation rates. In general, we found OIO to be more important for the growth of newly formed particles than for the formation of new nuclei. According to our studies, observations of particle "bursts" can only be explained by hot spot-like, not by homogeneously distributed emissions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3