A description of the first open-source community release of MISTRA-v9.0: a 0D/1D atmospheric boundary layer chemistry model
-
Published:2022-07-27
Issue:14
Volume:15
Page:5807-5828
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Bock JosuéORCID, Kaiser JanORCID, Thomas MaxORCID, Bott Andreas, von Glasow Roland
Abstract
Abstract. We present MISTRA-v9.0, a one-dimensional (1D) and box (0D) atmospheric chemistry model. The model includes a detailed particle description with regards to the microphysics, gas–particle interactions, and liquid-phase chemistry within particles.
Version 9.0 (v9.0) is the first release of MISTRA as an open-source community model.
A major review of the code has been performed along with this public version release to improve the user friendliness and platform independence of the model. The purpose of this public release is to maximise the benefit of MISTRA to the community by making the model freely available and easier to use and develop.
This paper presents a thorough description of the model characteristics and components.
We show some examples of simulations reproducing previous studies with MISTRA, finding that v9.0 is consistent with previous versions.
Publisher
Copernicus GmbH
Reference83 articles.
1. Aiuppa, A., Franco, A., von Glasow, R., Allen, A. G., D'Alessandro, W., Mather, T. A., Pyle, D. M., and Valenza, M.: The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations, Atmos. Chem. Phys., 7, 1441–1450, https://doi.org/10.5194/acp-7-1441-2007, 2007. a 2. Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources
and role in atmospheric chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997. a 3. Audiffren, N., Renard, M., Buisson, E., and Chaumerliac, N.: Deviations from
the Henry's law equilibrium during cloud events: a numerical approach of
the mass transfer between phases and its specific numerical effects,
Atmos. Res., 49, 139–161, https://doi.org/10.1016/S0169-8095(98)00072-6,
1998. a 4. Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson‐Parris,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A., Dufresne, J.,
Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,
Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,
D., and Stevens, B.: Bounding global aerosol radiative forcing of climate
change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020. a 5. Bender, F. A.: Aerosol forcing: still uncertain, still relevant, AGU Advances,
1, e2019AV000128, https://doi.org/10.1029/2019AV000128, 2020. a
|
|