Atmospheric ions and nucleation: a review of observations

Author:

Hirsikko A.,Nieminen T.,Gagné S.,Lehtipalo K.,Manninen H. E.,Ehn M.,Hõrrak U.,Kerminen V.-M.,Laakso L.,McMurry P. H.,Mirme A.,Mirme S.,Petäjä T.,Tammet H.,Vakkari V.,Vana M.,Kulmala M.

Abstract

Abstract. This review is based on ca. 260 publications, 93 of which included data on the temporal and spatial variation of the concentration of small ions (<1.6 nm in diameter) especially in the lower troposphere, chemical composition, or formation and growth rates of sub-3 nm ions. This information was collected on tables and figures. The small ions exist all the time in the atmosphere, and the average concentrations of positive and negative small ions are typically 200–2500 cm−3. However, concentrations up to 5000 cm−3 have been observed. The results are in agreement with observations of ion production rates in the atmosphere. We also summarised observations on the conversion of small ions to intermediate ions, which can act as embryos for new atmospheric aerosol particles. Those observations include the formation rates (J2[ion]) of 2-nm intermediate ions, growth rates (GR[ion]) of sub-3 nm ions, and information on the chemical composition of the ions. Unfortunately, there were only a few studies which presented J2[ion] and GR[ion]. Based on the publications, the formation rates of 2-nm ions were 0–1.1 cm−3 s−1, while the total 2-nm particle formation rates varied between 0.001 and 60 cm−3 s−1. Due to small changes in J2[ion], the relative importance of ions in 2-nm particle formation was determined by the large changes in J2[tot], and, accordingly the contribution of ions increased with decreasing J2[tot]. Furthermore, small ions were observed to activate for growth earlier than neutral nanometer-sized particles and at lower saturation ratio of condensing vapours.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3