Evaluation of transport processes over North China Plain and Yangtze River Delta using MAX-DOAS observations

Author:

Song YuhangORCID,Xing ChengzhiORCID,Liu ChengORCID,Lin Jinan,Wu Hongyu,Liu Ting,Lin Hua,Zhang ChengxinORCID,Tan Wei,Ji Xiangguang,Liu Haoran,Li Qihua

Abstract

Abstract. Pollutant transport has a substantial impact on the atmospheric environment in megacity clusters. However, owing to the lack of knowledge of vertical pollutant structure, quantification of transport processes and understanding of their impacts on the environment remain inadequate. In this study, we retrieved the vertical profiles of aerosols, nitrogen dioxide (NO2), and formaldehyde (HCHO) using multi-axis differential optical absorption spectroscopy (MAX-DOAS) and analyzed three typical transport phenomena over the North China Plain (NCP) and Yangtze River Delta (YRD). We found the following: (1) the main transport layers (MTL) of aerosols, NO2, and HCHO along the southwest–northeast transport pathway in the Jing-Jin-Ji region were approximately 400–800, 0–400, and 400–1200 m, respectively. The maximum transport flux of HCHO appeared in Wangdu (WD), and aerosol and NO2 transport fluxes were assumed to be high in Shijiazhuang (SJZ), both urban areas being significant sources feeding regional pollutant transport pathways. (2) The NCP was affected by severe dust transport on 15 March 2021. The airborne dust suppressed dissipation and boosted pollutant accumulation, decreasing the height of high-altitude pollutant peaks. Furthermore, the dust enhanced aerosol production and accumulation, weakening light intensity. For the NO2 levels, dust and aerosols had different effects. At the SJZ and Dongying (DY) stations, the decreased light intensity prevented NO2 photolysis and favored NO2 concentration increase. In contrast, dust and aerosols provided surfaces for heterogeneous reactions, resulting in reduced NO2 levels at the Nancheng (NC) and Xianghe (XH) stations. The reduced solar radiation favored local HCHO accumulation in SJZ owing to the dominant contribution of the primary HCHO. (3) Back-and-forth transboundary transport between the NCP and YRD was found. The YRD-to-NCP and NCP-to-YRD transport processes mainly occurred in the 500–1500 and 0–1000 m layers, respectively. This transport, accompanied by the dome effect of aerosols, produced a large-scale increase in PM2.5, further validating the haze-amplifying mechanism.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Chinese Academy of Sciences

Anhui Provincial Key Research and Development Plan

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3