Direct formation of HONO through aqueous-phase photolysis of organic nitrates

Author:

González-Sánchez Juan MiguelORCID,Huix-Rotllant MiquelORCID,Brun Nicolas,Morin Julien,Demelas Carine,Durand AmandineORCID,Ravier SylvainORCID,Clément Jean-Louis,Monod Anne

Abstract

Abstract. Organic nitrates (RONO2) are secondary compounds whose fate is closely related to the transport and removal of NOx in the atmosphere. Despite their ubiquitous presence in submicron aerosols, the photochemistry of RONO2 has only been investigated in the gas phase, leaving their reactivity in condensed phases poorly explored. This work aims to address this gap by investigating, for the first time, the reaction products and the mechanisms of aqueous-phase photolysis of four RONO2 (i.e., isopropyl nitrate, isobutyl nitrate, α-nitrooxy acetone, and 1-nitrooxy-2-propanol). The results show that the reactivity of RONO2 in the aqueous phase differs significantly from that in the gas phase. In contrast to the gas phase, where RONO2 release NOx upon photolysis, the aqueous-phase photolysis of RONO2 leads primarily to the direct formation of nitrous acid (HONO or HNO2), which was confirmed by quantum chemistry calculations. Hence, the aqueous-phase photolysis of RONO2 represents both a NOx sink and a source of atmospheric nitrous acid, a significant precursor of ⋅ OH and ⋅ NO. These secondary radicals (⋅ OH and ⋅ NO) are efficiently trapped in the aqueous phase, leading to the formation of HNO3 and functionalized RONO2. This reactivity can thus potentially contribute to the aging of secondary organic aerosol (SOA) and serves as an additional source of aqueous-phase SOA.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Conseil Régional Provence-Alpes-Côte d'Azur

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3