Affiliation:
1. Aix-Marseille University, CNRS, ICR, Marseille, France
Abstract
Hybrid quantum mechanics/molecular mechanics (QM/MM) models are successful at describing the properties and reactivity of biological macromolecules. Combining ab initio QM/MM methods and periodic boundary conditions (PBC) is currently the optimal approach for modeling chemical processes in an infinite environment, but frequently, these models are too time-consuming for general applicability to biological systems in a solution. Here, we define a simple and efficient electrostatic embedding QM/MM model in PBC, combining the benefits of electrostatic potential fitted atomic charges and particle-mesh Ewald sums, which can efficiently treat systems of an arbitrary size at a reasonable computational cost. To illustrate this, we apply our scheme to extract the lowest singlet excitation energies from a model for Arabidopsis thaliana cryptochrome 1 containing circa 93 000 atoms, accurately reproducing the experimental absorption maximum.
Funder
Agence Nationale de la Recherche
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献