Origin of the moisture feeding the Heavy Precipitating Systems over Southeastern France

Author:

Duffourg F.,Ducrocq V.

Abstract

Abstract. In the Northwestern Mediterranean region, large amounts of precipitation can accumulate over the coasts in less than a day. The present study aims at characterising the origin and the pathways of the moisture feeding such heavy precipitation. The ten Heavy Precipitating Events (HPEs) that occurred over the French Mediterranean region during the autumns of 2008 and 2009 are simulated with the non-hydrostatic research numerical model Meso-NH at 2.5 km, 10 km and 40 km horizontal resolution. Using eulerian on-line passive tracers, high-resolution simulations (2.5 km horizontal resolution) show that the heavy precipitating systems are fed by a south-southwesterly to easterly low-level moist flow. It is typically 1000 m deep and remains almost unchanged all along an event. This low-level feeding flow crosses the most northwestern part of the Mediterranean in 5 to 10 h. Larger-scale simulations (40 km and 10 km horizontal resolution) show that the moisture of the low-level feeding flow is provided by both evaporation of the Mediterranean Sea within the last 2 days before the HPE triggering and transport from remote sources in the lower half of the troposphere over more than 3 to 4 days. Local Mediterranean moisture is gained along the air mass low-level progress towards the Northwestern Mediterranean basin following two main branches along the Spanish coast and west of Sardinia. The Mediterranean Sea is the main moisture source when anticyclonic conditions prevail during the last 3 or 4 days before the HPE. When cyclonic conditions prevail before the HPE, the relative contribution of local and remote sources is more balanced. Remote moisture comes most of the time from the Atlantic Ocean. African tropical moisture is a less frequent but larger remote source.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3