Improving forecasts of precipitation extremes over northern and central Italy using machine learning

Author:

Grazzini Federico12ORCID,Dorrington Joshua3ORCID,Grams Christian M.3ORCID,Craig George C.1ORCID,Magnusson Linus4ORCID,Vitart Frederic4ORCID

Affiliation:

1. Ludwig‐Maximilians‐Universität, Meteorologisches Institut Munich Germany

2. Arpae‐SIMC, Regione Emilia‐Romagna Bologna Italy

3. Department Troposphere Research Institute of Meteorology and Climate Research (IMKTRO), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

4. ECMWF Reading UK

Abstract

AbstractThe accurate prediction of intense precipitation events is one of the main objectives of operational weather services. This task is even more relevant nowadays, with the rapid progression of global warming which intensifies these events. Numerical weather prediction models have improved continuously over time, providing uncertainty estimation with dynamical ensembles. However, direct precipitation forecasting is still challenging. Greater availability of machine‐learning tools paves the way to a hybrid forecasting approach, with the optimal combination of physical models, event statistics, and user‐oriented postprocessing. Here we describe a specific chain, based on a random‐forest (RF) pipeline, specialised in recognising favourable synoptic conditions leading to precipitation extremes and subsequently classifying extremes into predefined types. The application focuses on northern and central Italy, taken as a testbed region, but is seamlessly extensible to other regions and time‐scales. The system is called MaLCoX (Machine Learning model predicting Conditions for eXtreme precipitation) and is running daily at the Italian regional weather service of ARPAE Emilia‐Romagna. MalCoX has been trained with the ARCIS gridded high‐resolution precipitation dataset as the target truth, using the last 20 years of the European Centre for Medium‐Range Weather Forecasts (ECMWF) reforecast dataset as input predictors. We show that, with a long enough training period, the optimal blend of larger‐scale information with direct model output improves the probabilistic forecast accuracy of extremes in the medium range. In addition, with specific methods, we provide a useful diagnostic to convey to forecasters the underlying physical storyline which makes a meteorological event extreme.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3