Winter warmings, tides and planetary waves: comparisions between CMAM (with interactive chemistry) and MFR-MetO observations and data

Author:

Manson A. H.,Meek C.,Chshyolkova T.,McLandress C.,Avery S. K.,Fritts D. C.,Hall C. M.,Hocking W. K.,Igarashi K.,MacDougall J. W.,Murayama Y.,Riggin C.,Thorsen D.,Vincent R. A.

Abstract

Abstract. Following earlier comparisons using the Canadian Middle Atmosphere Model (CMAM, without interactive chemistry), the dynamical characteristics of the model are assessed with interactive chemistry activated. Time-sequences of temperatures and winds at Tromsø (70° N) show that the model has more frequent and earlier stratospheric winter warmings than typically observed. Wavelets at mesospheric heights (76, 85 km) and from equator to polar regions show that CMAM tides are generally larger, but planetary waves (PW) smaller, than medium frequency (MF) radar-derived values. Tides modelled for eight geographic locations during the four seasons are not strikingly different from the earlier CMAM experiment; although monthly data now allow these detailed seasonal variations (local combinations of migrating and non-migrating components) within the mesosphere (circa 50–80 km) to be demonstrated for the first time. The dominant semi-diurnal tide of middle latitudes is, as in the earlier papers, quite well realized in CMAM. Regarding the diurnal tide, it is shown here and in an earlier study by one of the authors, that the main characteristics of the diurnal tide at low latitudes (where the S (1,1) mode dominates) are well captured by the model. However, in this experiment there are some other unobserved features for the diurnal tide, which are quite similar to those noted in the earlier CMAM experiment: low latitude amplitudes are larger than observed at 82 km, and middle latitudes feature an unobserved low altitude (73 km) summer maximum. Phases, especially at low and middle (circa 42° N) latitudes, do not match observations well. Mesospheric seasonal tidal variations available from the CUJO (Canada U.S.\\ Japan Opportunity) radar (MFR) network (sites 40–45° N) reveal interesting longitudinal differences between the CMAM and the MFR observations. In addition, model and observations differ in the character of the vertical phase variations at each network-location. Finally, the seasonal variations of planetary wave (PW) activity available from CMAM and the MFR show quite good agreement, apart from the amplitude differences (smaller in CMAM above 70 km). A major difference for the 16-d PW is that CMAM shows large amplitudes before the winter solstice; and for the 2-d PW, while both CMAM and MFR show summer and winter activity, the observed summer mesopause and winter mesospheric wave activities are stronger and more extended in height. Models such as CMAM, operated without data-assimilation, are now able to provide increasingly realistic climatologies of middle atmosphere tides and PW activity. Differences do exist however, and so discussion of the various factors affecting tidal and PW characteristics in atmospheres, modelled and observed, is provided. Other diagnostics of model-characteristics and of future desirable model experiments are suggested.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference60 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3