The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings

Author:

Matthias V.ORCID,Hoffmann P.,Manson A.,Meek C.,Stober G.ORCID,Brown P.,Rapp M.ORCID

Abstract

Abstract. The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50° to 60° N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid- than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a "normal" event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20° N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PW activity between 30° N and 50° N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3