Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network
-
Published:2020-11-06
Issue:21
Volume:17
Page:5335-5354
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Wang Wei-Lei, Song Guisheng, Primeau François, Saltzman Eric S., Bell Thomas G.ORCID, Moore J. Keith
Abstract
Abstract. Marine dimethyl sulfide (DMS) is important to climate due to the ability of DMS
to alter Earth's radiation budget.
Knowledge of the global-scale distribution, seasonal variability, and sea-to-air flux of DMS is needed in order to improve understanding of atmospheric sulfur, aerosol/cloud dynamics, and albedo.
Here we examine the use of an artificial neural network (ANN) to extrapolate
available DMS measurements to the global ocean and produce a global climatology
with monthly temporal resolution.
A global database of 82 996 ship-based DMS measurements in surface waters was
used along with a suite of environmental parameters consisting of
latitude–longitude coordinates, time of day, time of year, solar radiation,
mixed layer depth, sea surface temperature, salinity, nitrate, phosphate, and
silicate.
Linear regressions of DMS against the environmental parameters show that on a
global-scale mixed layer depth and solar radiation are the strongest predictors
of DMS.
These parameters capture ∼9 % and ∼7 % of the raw DMS data variance,
respectively.
Multilinear regression can capture more of the raw data variance (∼39 %) but
strongly underestimates DMS in high-concentration regions.
In contrast, the artificial neural network captures ∼66 % of the raw data
variance in our database.
Like prior climatologies our results show a strong seasonal cycle in surface
ocean DMS with the highest concentrations and sea-to-air fluxes in the high-latitude
summertime oceans.
We estimate a lower global sea-to-air DMS flux (20.12±0.43 Tg S yr−1)
than the prior estimate based on a map interpolation method when the same gas transfer velocity parameterization is used.
Our sensitivity test results show that DMS concentration does not change unidirectionally with each of the environmental parameters, which emphasizes the interactions among these parameters.
The ANN model suggests that the flux of DMS from the ocean to the atmosphere will increase with global warming.
Given that larger DMS fluxes induce greater cloud albedo, this corresponds to a negative climate feedback.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference64 articles.
1. Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part
1. The nature and sources of cloud-active aerosols, Earth.-Sci. Rev., 89,
13–41, 2008. a 2. Andreae, M. O. and Barnard, W. R.: The marine chemistry of dimethylsulfide,
Mar. Chem., 14, 267–279, 1984. a 3. Archer, S. D., Cummings, D. G., Llewellyn, C. A., and Fishwick, J. R.:
Phytoplankton taxa, irradiance and nutrient availability determine the
seasonal cycle of DMSP in temperate shelf seas, Mar. Ecol. Prog. Ser., 394,
111–124, 2009. a 4. Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P., Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., Liu, H., Proctor, C., Bolaños, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K., Bates, T. S., Bell, T. G., Bidle, K. D., Boss, E. S., Brooks, S. D., Cairns, B., Carlson, C., Halsey, K., Harvey, E. L., Hu, C., Karp-Boss, L., Kleb, M., Menden-Deuer, S., Morison, F., Quinn, P. K., Scarino, A. Jo, Anderson, B., Chowdhary, J., Crosbie, E., Ferrare, R., Hair, J. W., Hu, Y., Janz, S., Redemann, J., Saltzman, E., Shook, M., Siegel, D. A., Wisthaler, A., Martin, M. Y., Ziemba, L.: The
North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive
and Mission Overview, Front. Mar. Sci., 6, 1–25, https://doi.org/10.3389/fmars.2019.00122, 2019. a, b 5. Bergen, K. J., Johnson, P. A., De Hoop, M. V., and Beroza, G. C.: Machine
learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323,
2019. a
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|