Estimation of effective porosity in large-scale groundwater models by combining particle tracking, auto-calibration and <sup>14</sup>C dating

Author:

Meyer RenaORCID,Engesgaard Peter,Hinsby KlausORCID,Piotrowski Jan A.,Sonnenborg Torben O.

Abstract

Abstract. Effective porosity plays an important role in contaminant management. However, the effective porosity is often assumed to be constant in space and hence heterogeneity is either neglected or simplified in transport model calibration. Based on a calibrated highly parametrized flow model, a three-dimensional advective transport model (MODPATH) of a 1300 km2 coastal area of southern Denmark and northern Germany is presented. A detailed voxel model represents the highly heterogeneous geological composition of the area. Inverse modelling of advective transport is used to estimate the effective porosity of 7 spatially distributed units based on apparent groundwater ages inferred from 11 14C measurements in Pleistocene and Miocene aquifers, corrected for the effects of diffusion and geochemical reactions. By calibration of the seven effective porosity units, the match between the observed and simulated ages is improved significantly, resulting in a reduction of ME of 99 % and RMS of 82 % compared to a uniform porosity approach. Groundwater ages range from a few hundred years in the Pleistocene to several thousand years in Miocene aquifers. The advective age distributions derived from particle tracking at each sampling well show unimodal (for younger ages) to multimodal (for older ages) shapes and thus reflect the heterogeneity that particles encounter along their travel path. The estimated effective porosity field, with values ranging between 4.3 % in clay and 45 % in sand formations, is used in a direct simulation of distributed mean groundwater ages. Although the absolute ages are affected by various uncertainties, a unique insight into the complex three-dimensional age distribution pattern and potential advance of young contaminated groundwater in the investigated regional aquifer system is provided, highlighting the importance of estimating effective porosity in groundwater transport modelling and the implications for groundwater quantity and quality assessment and management.

Funder

Geocenter Danmark

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference91 articles.

1. Anderson, M., Woessner, W. W., and Hunt, R.: Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd Edn., Elsevier, 2015.

2. Appelo, C. A. J. and Postma, D.: Geochemistry, Groundwater and Pollution, Balkema Publishers, Amsterdam, 2005.

3. Bethke, C. M. and Johnson, T. M.: Paradox of groundwater age, Geology, 30, 107–110, https://doi.org/10.1130/0091-7613(2002)030&lt;0107:POGA&gt;2.0.CO;2, 2002.

4. Bethke, C. M. and Johnson, T. M.: Groundwater Age and Groundwater Age Dating, Annu. Rev. Earth Pl. Sc., 36, 121–152, https://doi.org/10.1146/annurev.earth.36.031207.124210, 2008.

5. Boaretto, E., Thorling, L., Sveinbjörnsdóttir, Á. E., Yechieli, Y., and Heinemeier, J.: Study of the effect of fossil organic carbon on 14C in groundwater from Hvinningdal, Denmark, in: Proceedings of the 16th International 14C Conference, vol. 40, edited by: Mook, W. G. and van der Plicht, J., 915–920, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3