Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil moisture beyond the 1 km scale

Author:

Meyer RenaORCID,Zhang Wenmin,Kragh Søren JulsgaardORCID,Andreasen MieORCID,Jensen Karsten Høgh,Fensholt RasmusORCID,Stisen SimonORCID,Looms Majken C.

Abstract

Abstract. Soil moisture estimates at high spatial and temporal resolution are of great value for optimizing water and agricultural management. To fill the gap between local ground observations and coarse spatial resolution remote sensing products, we use Soil Moisture Active Passive (SMAP) and Sentinel-1 data together with a unique data set of ground-based soil moisture estimates by cosmic ray neutron sensors (CRNS) and capacitance probes to test the possibility of downscaling soil moisture to the sub-kilometre resolution. For a high-latitude study area within a highly heterogeneous landscape and diverse land use in Denmark, we first show that SMAP soil moisture and Sentinel-1 backscatter time series correlate well with in situ CRNS observations. Sentinel-1 backscatter in both VV and VH polarizations shows a strong correlation with CRNS soil moisture at higher spatial resolutions (20–400 m) and exhibits distinct and meaningful signals at different land cover types. Satisfactory statistical correlations with CRNS soil moisture time series and capacitance probes are obtained using the SMAP Sentinel-1 downscaling algorithm. Accounting for different land use in the downscaling algorithm additionally improved the spatial distribution. However, the downscaling algorithm investigated here does not fully account for the vegetation dependency at sub-kilometre resolution. The study suggests that future research focussing on further modifying the downscaling algorithm could improve representative soil moisture patterns at a fine scale since backscatter signals are clearly informative. Highlights. Backscatter produces informative signals even at high resolutions. At the 100 m scale, the Sentinel-1 VV and VH polarizations are soil moisture dependent. The downscaling algorithm is improved by introducing land-cover-dependent clusters. The downscaled satellite and CRNS soil moisture agree best at the agricultural site.

Funder

Danida Fellowship Centre

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3