Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015

Author:

Thériault Julie M.,Hung Ida,Vaquer Paul,Stewart Ronald E.ORCID,Pomeroy John W.ORCID

Abstract

Abstract. Precipitation events that bring rain and snow to the Banff–Calgary area of Alberta are a critical aspect of the region's water cycle and can lead to major flooding events such as the June 2013 event that was the second most costly natural disaster in Canadian history. Because no special atmospheric-oriented observations of these events have been made, a field experiment was conducted in March and April 2015 in Kananaskis, Alberta, to begin to fill this gap. The goal was to characterize and better understand the formation of the precipitation at the surface during spring 2015 at a specific location in the Kananaskis Valley. Within the experiment, detailed measurements of precipitation and weather conditions were obtained, a vertically pointing Doppler radar was deployed and weather balloons were released. Although 17 precipitation events occurred, this period was associated with much less precipitation than normal (−35 %) and above-normal temperatures (2.5 ∘C). Of the 133 h of observed precipitation, solid precipitation occurred 71 % of the time, mixed precipitation occurred 9 % and rain occurred 20 %. An analysis of 17 504 precipitation particles from 1181 images showed that a wide variety of crystals and aggregates occurred and approximately 63 % showed signs of riming. This was largely independent of whether flows aloft were upslope (easterly) or downslope (westerly). In the often sub-saturated surface conditions, hydrometeors containing ice occurred at temperatures as high as 9 ∘C. Radar structures aloft were highly variable with reflectivity sometimes >30 dBZe and Doppler velocity up to −1 m s−1, which indicates upward motion of particles within ascending air masses. Precipitation was formed in this region within cloud fields sometimes having variable structures and within which supercooled water at least sometimes existed to produce accreted particles massive enough to reach the surface through the relatively dry sub-cloud region.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3