PARSIVEL Snow Observations: A Critical Assessment

Author:

Battaglia Alessandro1,Rustemeier Elke1,Tokay Ali2,Blahak Ulrich3,Simmer Clemens1

Affiliation:

1. Meteorological Institute, University of Bonn, Bonn, Germany

2. Joint Center for Earth Systems Technology (JCET), University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Institute for Meteorology and Climate Research, Universität Karlsruhe/Forschungszentrum, Karlsruhe, Germany

Abstract

Abstract The performance of the laser-optical Particle Size Velocity (PARSIVEL) disdrometer is evaluated to determine the characteristics of falling snow. PARSIVEL’s measuring principle is reexamined to detect its limitations and pitfalls when applied to solid precipitation. This study uses snow observations taken during the Canadian Cloudsat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Validation Project (C3VP) campaign, when two PARSIVEL instruments were collocated with a single two-dimensional disdrometer (2-DVD), which allows more detailed observation of snowflakes. When characterizing the snowflake size, PARSIVEL instruments inherently retrieve only one size parameter, which is approximately equal to the widest horizontal dimension (more accurately with large snowflakes) and that has no microphysical meaning. Unlike for raindrops, the equivolume PARSIVEL diameter—the PARSIVEL output variable—has no physical counterpart for snowflakes. PARSIVEL’s fall velocity measurement may not be accurate for a single snowflake particle. This is due to the internally assumed relationship between horizontal and vertical snow particle dimensions. The uncertainty originates from the shape-related factor, which tends to depart more and more from unity with increasing snowflake sizes and can produce large errors. When averaging over a large number of snowflakes, the correction factor is size dependent with a systematic tendency to an underestimation of the fall speed (but never exceeding 20%). Compared to a collocated 2-DVD for long-lasting events, PARSIVEL seems to overestimate the number of small snowflakes and large particles. The disagreement between PARSIVEL and 2-DVD snow measurements can only be partly ascribed to PARSIVEL intrinsic limitations (border effects and sizing problems), but it has to deal with the difficulties and drawbacks of both instruments in fully characterizing snow properties.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3