Influences of Summer Precipitation Occurrence Time on Raindrop Spectrum Characteristics over the Northeastern Tibetan Plateau

Author:

Zhang Yuxin12,Han Huibang12,Zhang Boyue12,Hou Yonghui12

Affiliation:

1. Meteorological Disaster Prevention Technology Center in Qinghai Province, Xining 810001, China

2. Key Laboratory for Disaster Prevention and Mitigation in Qinghai Province, Xining 810001, China

Abstract

The impact of unique terrain on the microphysics of nighttime precipitation on the Tibetan Plateau (TP) has not been fully appreciated, due to a lack of observation. In this study, we used three raindrop spectrometers deployed in the northeastern TP to analyze the characteristics of the raindrop spectrum during two types of summer precipitation. These two types are classified according to their occurrence times: one starting in the daytime and lasting into the night (DP), while the other started at night and continuing into the daytime (NP). The results show that precipitation with a rain rate ranging from 1.0 to 5.0 mm h−1 contributes the most to the total precipitation, with this contribution rate being higher in the NP than in the DP. All the raindrop spectra follow a single-peak distribution pattern, and the logarithm of the generalized intercept parameter (lgNw) rises with the rain rate. The spectral widths of the DP-n (the nighttime part of the DP) are broader than those of the DP-d (the daytime part of the DP). Moreover, the average lgNw and mass-weighted mean diameter (Dm) over the northeastern TP were 2.65 mm−1 mm−3 and 1.04 mm, respectively, both of which are smaller than their equivalents in the plains. In addition, the gamma distribution can better fit the raindrop size distributions of the two types of precipitation. It is found that precipitation is more likely to occur over the TP at night. The characteristics of NP are reflected in two aspects. First, the sample size of the precipitation at the rain rate of 1.0–5.0 mm h−1 is higher in the NP-n (the nighttime part of the NP), and the precipitation at this rain rate contributes the most to the total precipitation. Second, for the same rain rate, the precipitation particles in the NP-n are larger.

Funder

Second Tibetan Plateau Atmospheric Sciences Experiment

Science and Technology Program of Qinghai, China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3