The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
-
Published:2021-06-24
Issue:6
Volume:14
Page:4689-4706
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Dogniaux Matthieu, Crevoisier Cyril, Armante Raymond, Capelle Virginie, Delahaye Thibault, Cassé Vincent, De Mazière Martine, Deutscher Nicholas M.ORCID, Feist Dietrich G.ORCID, Garcia Omaira E., Griffith David W. T.ORCID, Hase Frank, Iraci Laura T.ORCID, Kivi RigelORCID, Morino IsamuORCID, Notholt Justus, Pollard David F.ORCID, Roehl Coleen M., Shiomi KeiORCID, Strong KimberlyORCID, Té YaoORCID, Velazco Voltaire A.ORCID, Warneke Thorsten
Abstract
Abstract. A better understanding of greenhouse gas surface sources
and sinks is required in order to address the global challenge of climate
change. Space-borne remote estimations of greenhouse gas atmospheric
concentrations can offer the global coverage that is necessary to improve
the constraint on their fluxes, thus enabling a better monitoring of
anthropogenic emissions. In this work, we introduce the Adaptable 4A
Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters
from any remote sensing observation. The algorithm is based on the Optimal
Estimation algorithm, relying on the Operational version of the Automatized
Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along
with the Gestion et Étude des Informations Spectroscopiques
Atmosphériques: Management and Study of Atmospheric Spectroscopic
Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied
to retrieve the column-averaged dry air mole fraction of carbon dioxide
(XCO2) from a sample of measurements performed by the Orbiting
Carbon Observatory-2 (OCO-2) mission. Those have been selected as a
compromise between coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI XCO2 retrievals successfully capture the latitudinal variations of CO2 and its seasonal
cycle and long-term increasing trend. Comparison with ground-based
observations from the Total Carbon Column Observing Network (TCCON) yields a bias of 1.30±1.32 ppm (parts per million), which is comparable to the standard deviation of the Atmospheric CO2 Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.
Funder
Centre National d’Etudes Spatiales Centre National de la Recherche Scientifique
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference75 articles.
1. Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013. 2. Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., and Miller, J. B.: The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem. Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, 2018. 3. Blumenstock, T., Hase, F., Schneider, M., García, O. E., and Sepúlveda, E.: TCCON data from Izana (ES), Release GGG2014.R1 (Version R1), CaltechDATA [data set], https://doi.org/10.14291/TCCON.GGG2014.IZANA01.R1, 2017. 4. Bösch, H., Toon, G. C., Sen, B., Washenfelder, R. A., Wennberg, P. O.,
Buchwitz, M., de Beek, R., Burrows, J. P., Crisp, D., Christi, M., Connor,
B. J., Natraj, V., and Yung, Y. L.: Space-based near-infrared CO2
measurements: Testing the Orbiting Carbon Observatory retrieval algorithm
and validation concept using SCIAMACHY observations over Park Falls,
Wisconsin, J. Geophys. Res., 111, D23302, https://doi.org/10.1029/2006JD007080,
2006. 5. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
objectives and measurement modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|