The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations

Author:

Dogniaux Matthieu,Crevoisier Cyril,Armante Raymond,Capelle Virginie,Delahaye Thibault,Cassé Vincent,De Mazière Martine,Deutscher Nicholas M.ORCID,Feist Dietrich G.ORCID,Garcia Omaira E.,Griffith David W. T.ORCID,Hase Frank,Iraci Laura T.ORCID,Kivi RigelORCID,Morino IsamuORCID,Notholt Justus,Pollard David F.ORCID,Roehl Coleen M.,Shiomi KeiORCID,Strong KimberlyORCID,Té YaoORCID,Velazco Voltaire A.ORCID,Warneke Thorsten

Abstract

Abstract. A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on their fluxes, thus enabling a better monitoring of anthropogenic emissions. In this work, we introduce the Adaptable 4A Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters from any remote sensing observation. The algorithm is based on the Optimal Estimation algorithm, relying on the Operational version of the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along with the Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied to retrieve the column-averaged dry air mole fraction of carbon dioxide (XCO2) from a sample of measurements performed by the Orbiting Carbon Observatory-2 (OCO-2) mission. Those have been selected as a compromise between coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI XCO2 retrievals successfully capture the latitudinal variations of CO2 and its seasonal cycle and long-term increasing trend. Comparison with ground-based observations from the Total Carbon Column Observing Network (TCCON) yields a bias of 1.30±1.32 ppm (parts per million), which is comparable to the standard deviation of the Atmospheric CO2 Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.

Funder

Centre National d’Etudes Spatiales

Centre National de la Recherche Scientifique

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference75 articles.

1. Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.

2. Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., and Miller, J. B.: The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem. Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, 2018.

3. Blumenstock, T., Hase, F., Schneider, M., García, O. E., and Sepúlveda, E.: TCCON data from Izana (ES), Release GGG2014.R1 (Version R1), CaltechDATA [data set], https://doi.org/10.14291/TCCON.GGG2014.IZANA01.R1, 2017.

4. Bösch, H., Toon, G. C., Sen, B., Washenfelder, R. A., Wennberg, P. O., Buchwitz, M., de Beek, R., Burrows, J. P., Crisp, D., Christi, M., Connor, B. J., Natraj, V., and Yung, Y. L.: Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin, J. Geophys. Res., 111, D23302, https://doi.org/10.1029/2006JD007080, 2006.

5. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056&lt;0127:SMOAMM&gt;2.0.CO;2, 1999.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3