Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017

Author:

Brunamonti Simone,Jorge Teresa,Oelsner Peter,Hanumanthu SreeharshaORCID,Singh Bhupendra B.ORCID,Kumar K. Ravi,Sonbawne Sunil,Meier Susanne,Singh Deepak,Wienhold Frank G.,Luo Bei Ping,Boettcher Maxi,Poltera YannORCID,Jauhiainen Hannu,Kayastha Rijan,Karmacharya JagadishworORCID,Dirksen Ruud,Naja ManishORCID,Rex Markus,Fadnavis SuvarnaORCID,Peter Thomas

Abstract

Abstract. The Asian summer monsoon anticyclone (ASMA) is a major meteorological system of the upper troposphere–lower stratosphere (UTLS) during boreal summer. It is known to contain enhanced tropospheric trace gases and aerosols, due to rapid lifting from the boundary layer by deep convection and subsequent horizontal confinement. Given its dynamical structure, the ASMA represents an efficient pathway for the transport of pollutants to the global stratosphere. A detailed understanding of the thermal structure and processes in the ASMA requires accurate in situ measurements. Within the StratoClim project we performed state-of-the-art balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter from two stations on the southern slopes of the Himalayas. In total, 63 balloon soundings were conducted during two extensive monsoon-season campaigns, in August 2016 in Nainital, India (29.4∘ N, 79.5∘ E), and in July–August 2017 in Dhulikhel, Nepal (27.6∘ N, 85.5∘ E); one shorter post-monsoon campaign was also carried out in November 2016 in Nainital. These measurements provide unprecedented insights into the UTLS thermal structure, the vertical distributions of water vapor, ozone and aerosols, cirrus cloud properties and interannual variability in the ASMA. Here we provide an overview of all of the data collected during the three campaign periods, with focus on the UTLS region and the monsoon season. We analyze the vertical structure of the ASMA in terms of significant levels and layers, identified from the temperature and potential temperature lapse rates and Lagrangian backward trajectories, which provides a framework for relating the measurements to local thermodynamic properties and the large-scale anticyclonic flow. Both the monsoon-season campaigns show evidence of deep convection and confinement extending up to 1.5–2 km above the cold-point tropopause (CPT), yielding a body of air with high water vapor and low ozone which is prone to being lifted further and mixed into the free stratosphere. Enhanced aerosol backscatter also reveals the signature of the Asian tropopause aerosol layer (ATAL) over the same region of altitudes. The Dhulikhel 2017 campaign was characterized by a 5 K colder CPT on average than in Nainital 2016 and a local water vapor maximum in the confined lower stratosphere, about 1 km above the CPT. Data assessment and modeling studies are currently ongoing with the aim of fully exploring this dataset and its implications with respect to stratospheric moistening via the ASMA system and related processes.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3