High-frequency boundary layer profiling with reusable radiosondes

Author:

Legain D.,Bousquet O.,Douffet T.,Tzanos D.,Moulin E.,Barrie J.,Renard J.-B.

Abstract

Abstract. A new system for high-frequency boundary layer profiling based upon radiosondes and free balloons was tested during the field phases of the Boundary Layer Late Afternoon and Sunset Turbulence experiment (BLLAST 2011, Lannemezan, France) and of the Hydrological cycle in the Mediterranean Experiment (HyMeX, 2012). The system consists of a conventional Vaisala receiver and a GPS radiosonde (pressure, wind, humidity and temperature), that is tied to a couple of inflated balloons. The principle of the sounding system is to permit the first balloon to detach from the rawinsonde at a predetermined altitude, allowing for the rawinsonde to slowly descend with the second balloon to perform a second, new sounding. The instrumentation is then eventually recovered. The expecting landing area is anticipated before the flight by estimating the trajectory of the probe from a forecasted wind profile and by specifying both the balloon release altitude and the mean ascent and descent rates of the system. The real landing point is determined by the last transmission of the radiosonde GPS and the visual landmark provided by the second balloon. Seventy-two soundings were performed during BLLAST (62) and HyMeX (10), with a recovery rate of more than 80% during the BLLAST field campaign. Recovered radiosondes were generally reused several times, often immediately after recovery, which definitely demonstrates the high potential of this system.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference9 articles.

1. Bousquet, O. and Tabary, P.: Development of a nationwide, real-Time, 3-D wind and reflectivity radar composite in France, Q. J. Roy. Meteorol. Soc., https://doi.org/10.1002/qj.2163, in press, 2013.

2. Douglas, M. W.: Progress towards development of the glidersonde: a recoverable radiosonde system, Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, St. Petersburg, Russian Federation, 27–29 November 2008, P1.6, 2008.

3. Ducrocq, V., Braud, I., Davolio, S., et al.: The HyMeX Special Observing Period, B. Am. Meteorol. Soc., accepted, 2013.

4. Gallice, A., Wienhold, F. G., Hoyle, C. R., Immler, F., and Peter, T.: Modeling the ascent of sounding balloons: derivation of the vertical air motion, Atmos. Meas. Tech., 4, 2235–2253, https://doi.org/10.5194/amt-4-2235-2011, 2011.

5. Meisinger, L.: Recovery of sounding balloons at sea, Mon. Weather Rev., 49, p. 158, 1921.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3