Characterization and evaluation of AIRS-based estimates of the deuterium content of water vapor
-
Published:2019-04-15
Issue:4
Volume:12
Page:2331-2339
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Worden John R.ORCID, Kulawik Susan S., Fu DejianORCID, Payne Vivienne H., Lipton Alan E., Polonsky Igor, He Yuguang, Cady-Pereira Karen, Moncet Jean-Luc, Herman Robert L., Irion Fredrick W., Bowman Kevin W.
Abstract
Abstract. Single-pixel tropospheric retrievals of HDO and H2O concentrations
are retrieved from Atmospheric Infrared Sounder (AIRS) radiances using the
optimal estimation algorithm developed for the Aura Tropospheric Emission
Spectrometer (TES) project. We evaluate the error characteristics and
vertical sensitivity of AIRS measurements corresponding to 5 d of TES data
(or five global surveys) during the Northern Hemisphere summers between 2006
and 2010 (∼600 co-located comparisons per day). We find that the
retrieval characteristics of the AIRS deuterium content measurements have
similar vertical resolution in the middle troposphere as TES but with
slightly less sensitivity in the lowermost troposphere, with a typical
degrees of freedom (DOFS) in the tropics of 1.5. The calculated measurement
uncertainty is ∼30 ‰ (parts per
thousand relative to the deuterium composition of ocean water) for a
tropospheric average between 750 and 350 hPa, the altitude region where AIRS
is most sensitive, compared to ∼15 ‰ for the TES data.
Comparison with the TES data also indicates that the uncertainty of a single
target AIRS HDO ∕ H2O measurement is ∼30 ‰.
Comparison of AIRS and TES data between 30∘ S and 50∘ N
indicates that the AIRS data are biased low by ∼-2.6 ‰ with a
latitudinal variation of ∼7.8 ‰. This latitudinal variation is
consistent with the accuracy of TES data compared to in situ measurements,
suggesting that both AIRS and TES have similar accuracy.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference55 articles.
1. Alvarado, M. J., Payne, V. H., Mlawer, E. J., Uymin, G., Shephard, M. W.,
Cady-Pereira, K. E., Delamere, J. S., and Moncet, J.-L.: Supplement to
“Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for
temperature, water vapor, and trace gas retrievals: recent updates evaluated
with IASI case studies”, Atmos. Chem. Phys., 13,
https://doi.org/10.5194/acp-13-6687-2013-supplement, 2013. 2. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E.,
McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D.
H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: design,
science objectives, data products, and processing systems, IEEE T. Geosci.
Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003. 3. Bailey, A., Blossey, P. N., Noone, D., Nusbaumer, J., and Wood, R.: Detecting
shifts in tropical moisture imbalances with satellite-derived isotope ratios
in water vapor, J. Geophys. Res.-Atmos., 122, 5763–5779,
https://doi.org/10.1029/2010JD015197, 2017. 4. Beer, R., Glavich, T. A., and Rider, D. M.: Tropospheric emission
spectrometer for the Earth Observing System's Aura satellite, Appl. Optics,
40, 2356–2367, 2001. 5. Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A.,
Bowman, K. W., Sander, S. P., Fisher, B. M., Payne, V. H., Luo, M., Osterman,
G. B., and Worden, J. R.: First satellite observations of lower tropospheric
ammonia and methanol, Geophys. Res. Lett., 35, L09801,
https://doi.org/10.1029/2008GL033642, 2008.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|