Assessing the potential of free-tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events

Author:

Schneider MatthiasORCID,Toride KinyaORCID,Khosrawi FarahnazORCID,Hase Frank,Ertl BenjaminORCID,Diekmann Christopher J.ORCID,Yoshimura KeiORCID

Abstract

Abstract. Satellite-based observations of free-tropospheric water vapour isotopologue ratios (HDO / H2O, expressed in form of the δ value δD) with good global and temporal coverage have become available recently. We investigate the potential of these observations for constraining the uncertainties of the atmospheric analyses fields of specific humidity (q), temperature (T), and δD and of variables that capture important properties of the atmospheric water cycle, namely the vertical velocity (ω), the latent heating rate (Q2), and the precipitation rate (Prcp). Our focus is on the impact of the δD observations relative to the impact achieved by the observation of q and T, which are much more easily observed by satellites and are routinely in use for atmospheric analyses. For our investigations we use an Observing System Simulation Experiment; i.e. we simulate the satellite observations of q, T, and δD with known uncertainties and coverage (e.g. observations are not available for cloudy conditions, i.e. at locations where the atmosphere is vertically unstable). Then we use the simulated observations within a Kalman-filter-based assimilation framework in order to evaluate their potential for improving the quality of atmospheric analyses. The study is made for low latitudes (30° S to 30° N) and for 40 d between mid-July and the end of August 2016. We find that q observations generally have the largest impacts on the analyses' quality and that T observations have stronger impacts overall than δD observations. We show that there is no significant impact of δD observations for stable atmospheric conditions; however, for very unstable conditions, the impact of δD observations is significant and even slightly stronger than the respective impact of T observations. Very unstable conditions are rare but are related to extreme events (e.g. storms, flooding); i.e. the δD observations significantly impact the analyses' quality of the events that have the largest societal consequences. The fact that no satellite observations are available at the location and time of the unstable conditions indicates a remote impact of δD observations that are available elsewhere. Concerning real-world applications, we conclude that the situation of δD satellite observations is very promising but that further improving the model's linkage between convective processes and the larger-scale δD fields might be needed for optimizing the assimilation impact of real-world δD observations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Reference55 articles.

1. Bailey, A., Nusbaumer, J., and Noone, D.: Precipitation efficiency derived from isotope ratios in water vapor distinguishes dynamical and microphysical influences on subtropical atmospheric constituents, J. Geophys. Res.-Atmos., 120, 9119–9137, https://doi.org/10.1002/2015JD023403, 2015. a

2. Blossey, P. N., Kuang, Z., and Romps, D. M.: Isotopic composition of water in the tropical tropopause layer in cloud-resolving simulations of an idealized tropical circulation, J. Geophys. Res.-Atmos., 115, D24309, https://doi.org/10.1029/2010JD014554, 2010. a, b

3. Boesch, H., Deutscher, N. M., Warneke, T., Byckling, K., Cogan, A. J., Griffith, D. W. T., Notholt, J., Parker, R. J., and Wang, Z.: HDO/H2O ratio retrievals from GOSAT, Atmos. Meas. Tech., 6, 599–612, https://doi.org/10.5194/amt-6-599-2013, 2013. a, b

4. Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean–Global Atmosphere–Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations, J. Geophys. Res.-Atmos., 113, D19305, https://doi.org/10.1029/2008JD009942, 2008. a

5. Bony, S., Stevens, B., Frierson, D., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3