Long-term trend and variability of atmospheric PM<sub>10</sub> concentration in the Po Valley

Author:

Bigi A.ORCID,Ghermandi G.

Abstract

Abstract. The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a data set of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long-term trend in deseasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to a few percent per year, by a generalized least squares and Theil–Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal–Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. Finally, the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop was low and restricted to a few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the observed drop in atmospheric PM10, or if the low drop in particulate emissions is indeed due to the uncertainty in the emission inventory data for this species.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference56 articles.

1. Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., and Hopke, P.: Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2, Atmos. Environ., 43, 2770–2780, https://doi.org/10.1016/j.atmosenv.2009.02.039, 2009.

2. Anttila, P. and Tuovinen, J.: Trends of primary and secondary pollutant concentrations in Finland in 1994–2007, Atmos. Environ., 44, 30–41, https://doi.org/10.1016/j.atmosenv.2009.09.041, 2010.

3. ARPA Emilia-Romagna: Air quality in Emilia-Romagna, 2012 Edn., Original title: La qualità dell'aria in Emilia Romagna, Edizione 2012, ARPA Emilia-Romagna, http://www.arpa.emr.it/cms3/documenti/_cerca_doc/aria/report_aria2012.pdf (last access: 8 March 2014), 2012 (in Italian).

4. Artuso, F., Chamard, P., Piacentino, S., Sferlazzo, D., De Silvestri, L., di Sarra, A., Meloni, D., and Monteleone, F.: Influence of transport and trends in atmospheric CO2 at Lampedusa, Atmos. Environ., 43, 3044–3051, https://doi.org/10.1016/j.atmosenv.2009.03.027, 2009.

5. Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A., Weingartner, E., Baltensperger, U., Bukowiecki, N., Lihavainen, H., Kivekäs, N., Asmi, E., Aalto, P. P., Kulmala, M., Wiedensohler, A., Birmili, W., Hamed, A., O'Dowd, C., G Jennings, S., Weller, R., Flentje, H., Fjaeraa, A. M., Fiebig, M., Myhre, C. L., Hallar, A. G., Swietlicki, E., Kristensson, A., and Laj, P.: Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations, Atmos. Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-2013, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3