Optimized procedure for the determination of alkylamines in airborne particulate matter of anthropized areas
-
Published:2023-11-17
Issue:1
Volume:1
Page:29-38
-
ISSN:2940-3391
-
Container-title:Aerosol Research
-
language:en
-
Short-container-title:Aerosol Research
Author:
Spolaor Davide, Soldà Lidia, Formenton Gianni, Roverso Marco, Badocco Denis, Bogialli SaraORCID, Monikh Fazel A., Tapparo AndreaORCID
Abstract
Abstract. Due to their role in the formation of secondary aerosol, the concentrations of the most abundant aliphatic amines (methylamine (MA), dimethylamine (DMA), ethylamine (EA), diethylamine (DEA), propylamine (PA), and butylamine (BA)) present in the aerosol of a very anthropized area were measured by an optimized analytical procedure. PM10 samples were collected in the tanning district of Vicenza (in the Po Valley, northern Italy) in autumn 2020. Alkylamines were extracted in water and converted to carbamates through derivatization with Fmoc-OSu (9-fluorenylmethoxycarbonyl-N-hydroxysuccinimide) for subsequent determination by ultra-high-performance liquid chromatography (UHPLC) with fluorescence detection. The procedure has been optimized, obtaining very satisfactory analytical performances: limits of detection (LODs) were in the range of 0.09–0.26 ng m−3, with an average uncertainty of 3.4 % and recoveries of 95 %–101 %. The mean total concentration of the six amines measured in this study was 37±17 ng m−3, with DMA making the largest contribution. The proposed procedure may contribute to a better characterization of the local aerosol. In our preliminary investigation, Pearson's correlation test showed that amines correlate strongly with each other and with secondary inorganic ions (NH4+, NO3-, and SO42-), confirming that they compete with ammonia in the acid–base atmospheric processes that lead to the formation of nitrate and sulfate particles. The developed method allows us to gather critical information about the load of aliphatic amines in particulate matter (PM) to gain more insights into the sources and fate of these chemicals in the atmosphere.
Publisher
Copernicus GmbH
Reference52 articles.
1. Akyüz, M.: Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry, Atmos. Environ., 42, 3809–3819, https://doi.org/10.1016/j.atmosenv.2007.12.057, 2008. 2. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. 3. ARPAV: Relazione Tecnica: I Monitoraggi della Qualità dell'Aria nell'Area della Concia Anno 2022, 1–54, https://www.arpa.veneto.it/arpav/chi-e-arpav/file-e-allegati/dap-vicenza/zona-concia/relazione-qualita-dellaria-zona-concia-2022.pdf (last access: 8 November 2023), 2023. 4. Backes, A., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory, Atmos. Environ., 131, 55–66, https://doi.org/10.1016/j.atmosenv.2016.01.041, 2016. 5. Bai, J., Baker, S. M., Goodrich-Schneider, R. M., Montazeri, N., and Sarnoski, P. J.: Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry, J. Food Sci., 84, 481–489, https://doi.org/10.1111/1750-3841.14478, 2019.
|
|