The chemistry influencing ODEs in the Polar Boundary Layer in spring: a model study

Author:

Piot M.,von Glasow R.

Abstract

Abstract. Near-total depletions of ozone have been observed in the Arctic spring since the mid 1980s. The autocatalytic cycles involving reactive halogens are now recognized to be of main importance for Ozone Depletion Events (ODEs) in the Polar Boundary Layer (PBL). We present sensitivity studies using the model MISTRA in the box-model mode on the influence of chemical species on these ozone depletion processes. In order to test the sensitivity of the chemistry under polar conditions, we compared base runs undergoing fluxes of either Br2, BrCl, or Cl2 to induce ozone depletions, with similar runs including a modification of the chemical conditions. The role of HCHO, H2O2, DMS, Cl2, C2H4, C2H6, HONO, NO2, and RONO2 was investigated. Cases with elevated mixing ratios of HCHO, H2O2, DMS, Cl2, and HONO induced a shift in bromine speciation from Br/BrO to HOBr/HBr, while high mixing ratios of C2H6 induced a shift from HOBr/HBr to Br/BrO. Cases with elevated mixing ratios of HONO, NO2, and RONO2 induced a shift to BrNO2/BrONO2. The shifts from Br/BrO to HOBr/HBr accelerated the aerosol debromination, but also increased the total amount of deposited bromine at the surface (mainly via increased deposition of HOBr). These shifts to HOBr/HBr also hindered the BrO self-reaction. In these cases, the ozone depletion was slowed down, where increases in H2O2 and HONO had the greatest effect. The tests with increased mixing ratios of C2H4 highlighted the decrease in HOx which reduced the production of HOBr from bromine radicals. In addition, the direct reaction of C2H4 with bromine atoms led to less available reactive bromine. The aerosol debromination was therefore strongly reduced. Ozone levels were highly affected by the chemistry of C2H4. Cl2-induced ozone depletions were found unrealistic compared to field measurements due to the rapid production of CH3O2, HOx, and ROOH which rapidly convert reactive chlorine to HCl in a "chlorine counter-cycle". This counter-cycle efficiently reduces the concentration of reactive halogens in the boundary layer. Depending on the relative bromine and chlorine mixing ratios, the production of CH3O2, HOx, and ROOH from the counter-cycle can significantly affect the bromine chemistry. Therefore, the presence of both bromine and chlorine in the air may unexpectedly lead to a slow down in ozone destruction. For all NOy species studied (HONO, NO2, RONO2) the chemistry is characterized by an increased bromine deposition on snow reducing the amount of reactive bromine in the air. Ozone is less depleted under conditions of high mixing ratios of NOx. The production of HNO3 led to the acid displacement of HCl, and the release of chlorine out of salt aerosols (Cl2 or BrCl) increased.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3