Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K

Author:

Adams J. W.,Holmes N. S.,Crowley J. N.

Abstract

Abstract. The uptake and reaction of HOBr with frozen salt surfaces of variable NaCl / NaBr composition and temperature were investigated with a coated wall flow tube reactor coupled to a mass spectrometer for gas-phase analysis. HOBr is efficiently taken up onto the frozen surfaces at temperatures between 253 and 233 K where it reacts to form the di-halogens BrCl and Br2, which are subsequently released into the gas-phase. The uptake coefficient for HOBr reacting with a frozen, mixed salt surface of similar composition to sea-spray was <approx> 10-2. The relative concentration of BrCl and Br2 released to the gas-phase was found to be strongly dependent on the ratio of Cl- to Br - in the solution prior to freezing / drying. For a mixed salt surface of similar composition to sea-spray the major product at low conversion of surface reactants (i.e. Br - and Cl-) was Br2. Variation of the pH of the NaCl / NaBr solution used to prepare the frozen surfaces was found to have no significant influence on the results. The observations are explained in terms of initial formation of BrCl in a surface reaction of HOBr with Cl-, and conversion of BrCl to Br2 via reaction of surface Br -. Experiments on the uptake and reaction of BrCl with frozen NaCl / NaBr solutions served to confirm this hypothesis. The kinetics and products of the interactions of BrCl, Br2 and Cl2 with frozen salt surfaces were also investigated, and lower limits to the uptake coefficients of > 0.034, >0.025 and >0.028 respectively, were obtained. The uptake and reaction of HOBr on dry salt surfaces was also investigated and the results closely resemble those obtained for frozen surfaces. During the course of this study the gas diffusion coefficients of HOBr in He and H2O were also measured as (273 ± 1) Torr cm2 s-1 and (51 ± 1) Torr cm2 s-1, respectively, at 255 K. The implications of these results for modelling the chemistry of the Arctic boundary layer in springtime are discussed.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3