The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry
-
Published:2023-09-07
Issue:9
Volume:17
Page:3739-3759
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Hill Emily A.ORCID, Urruty BenoîtORCID, Reese RonjaORCID, Garbe JuliusORCID, Gagliardini OlivierORCID, Durand Gaël, Gillet-Chaulet FabienORCID, Gudmundsson G. HilmarORCID, Winkelmann RicardaORCID, Chekki MondherORCID, Chandler DavidORCID, Langebroek Petra M.ORCID
Abstract
Abstract. Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Úa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, Reese et al., 2023a) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference72 articles.
1. Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b 2. Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open
systems: bifurcation, noise-induced and rate-dependent examples in the
climate system, Philo. T. Roy. Soc. A, 370, 1166–1184,
https://doi.org/10.1098/rsta.2011.0306, 2012. a 3. Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law, The Cryosphere, 13, 177–195, https://doi.org/10.5194/tc-13-177-2019, 2019. a 4. Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a
thermomechanically coupled ice sheet model, J. Geophys. Res.-Sol. Ea., 114, 1–21, https://doi.org/10.1029/2008JF001179, 2009. a, b 5. Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015. a, b
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|