Recent irreversible retreat phase of Pine Island Glacier

Author:

Reed BradORCID,Green J. A. MattiasORCID,Jenkins AdrianORCID,Gudmundsson G. HilmarORCID

Abstract

AbstractPine Island Glacier (PIG), a part of the West Antarctic marine ice sheet, has recently undergone substantial changes including speed up, retreat and thinning. Theoretical arguments and modelling work suggest that marine ice sheets can become unstable and undergo irreversible retreat. Here, we use an ice-flow model validated by observational data to show that a rapid PIG retreat in the 1970s from a subglacial ridge to an upstream ice plain was self-enhancing and irreversible. The results suggest that by the early 1970s, the retreat of PIG had reached a point beyond which its original position at the ridge could not be recovered, even during subsequent periods of cooler ocean conditions. The irreversible phase ended by the early 1990s after almost 40 km of retreat and 0.34 mm added to global mean sea level, making PIG the main contributor from the Antarctic ice sheet in this period.

Funder

RCUK | Natural Environment Research Council

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Social Sciences (miscellaneous),Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3