Mid-Holocene ocean and vegetation feedbacks over East Asia
-
Published:2013-09-13
Issue:5
Volume:9
Page:2153-2171
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Abstract
Abstract. Mid-Holocene ocean and vegetation feedbacks over East Asia are investigated by a set of numerical experiments performed with the version 4 of the Community Climate System Model (CCSM4). With reference to the pre-industrial period, most of the mid-Holocene annual and seasonal surface-air temperature and precipitation changes are found to result from a direct response of the atmosphere to insolation forcing, while dynamic ocean and vegetation modulate regional climate of East Asia to some extent. Because of its thermal inertia, the dynamic ocean induced an additional warming of 0.2 K for the annual mean, 0.5 K in winter (December–February), 0.0003 K in summer (June–August), and 1.0 K in autumn (September–November), but a cooling of 0.6 K in spring (March–May) averaged over China, and it counteracted (amplified) the direct effect of insolation forcing for the annual mean and in winter and autumn (spring) for that period. The dynamic vegetation had an area-average impact of no more than 0.4 K on the mid-Holocene annual and seasonal temperatures over China, with an average cooling of 0.2 K for the annual mean. On the other hand, ocean feedback induced a small increase of precipitation in winter (0.04 mm day−1) and autumn (0.05 mm day−1), but a reduction for the annual mean (0.14 mm day−1) and in spring (0.29 mm day−1) and summer (0.34 mm day−1) over China, while it also suppressed the East Asian summer monsoon rainfall. The effect of dynamic vegetation on the mid-Holocene annual and seasonal precipitation was comparatively small, ranging from −0.03 mm day−1 to 0.06 mm day−1 averaged over China. In comparison, the CCSM4 simulated annual and winter cooling over China agrees with simulations within the Paleoclimate Modeling Intercomparison Project (PMIP), but the results are contrary to the warming reconstructed from multiple proxy data for the mid-Holocene. Ocean feedback narrows this model–data mismatch, whereas vegetation feedback plays an opposite role but with a level of uncertainty.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Global and Planetary Change
Reference74 articles.
1. Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, 2011. 2. Berger, A.: Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978. 3. Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I.: Contrasting physiological and structural vegetation feedbacks in climate change simulations, Nature, 387, 796–799, 1997. 4. Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Lourens, L. J., Hilgen, F. J., and Weber, S. L.: Monsoonal response to mid-holocene orbital forcing in a high resolution GCM, Clim. Past, 8, 723–740, https://doi.org/10.5194/cp-8-723-2012, 2012. 5. Braconnot, P., Joussaume, S., Marti, O., and Noblet, N. D.: Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation, Geophys. Res. Lett., 26, 2481–2484, 1999.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|