Optimisation of LiDAR derived terrain models for river flow modelling

Author:

Mandlburger G.,Hauer C.,Höfle B.,Habersack H.,Pfeifer N.

Abstract

Abstract. Airborne LiDAR (Light Detection And Ranging) combines cost efficiency, high degree of automation, high point density of typically 1–10 points per m2 and height accuracy of better than ±15 cm. For all these reasons LiDAR is particularly suitable for deriving precise Digital Terrain Models (DTM) as geometric basis for hydrodynamic-numerical (HN) simulations. The application of LiDAR for river flow modelling requires a series of preprocessing steps. Terrain points have to be filtered and merged with river bed data, e.g. from echo sounding. Then, a smooth Digital Terrain Model of the Watercourse (DTM-W) needs to be derived, preferably considering the random measurement error during surface interpolation. In a subsequent step, a hydraulic computation mesh has to be constructed. Hydraulic simulation software is often restricted to a limited number of nodes and elements, thus, data reduction and data conditioning of the high resolution LiDAR DTM-W becomes necessary. We will present a DTM thinning approach based on adaptive TIN refinement which allows a very effective compression of the point data (more than 95% in flood plains and up to 90% in steep areas) while preserving the most relevant topographic features (height tolerance ±20 cm). Traditional hydraulic mesh generators focus primarily on physical aspects of the computation grid like aspect ratio, expansion ratio and angle criterion. They often neglect the detailed shape of the topography as provided by LiDAR data. In contrast, our approach considers both the high geometric resolution of the LiDAR data and additional mesh quality parameters. It will be shown that the modelling results (flood extents, flow velocities, etc.) can vary remarkably by the availability of surface details. Thus, the inclusion of such geometric details in the hydraulic computation meshes is gaining importance in river flow modelling.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference58 articles.

1. ARGE Kamp: Machbarkeitsstudie Hochwasserschutz, Studie im Auftrag der Niederösterreichischen Landesregierung, technical report, Austria, 2005.

2. Axelsson, P.: DEM generation from laser scanner data using adaptive TIN models, in: International Archives of Photogrammetry and Remote Sensing, XXXIII, B4, 111–118, Amsterdam, The Netherlands, 2000.

3. Baltsavias, E., Gruen, A., Eisenbeiss, H., Zhang, L., and Waser, L T.: High-quality image matching and automated generation of 3D tree models, Int. J. Remote Sens., 29, 1243–1259, 2008.

4. BEV: Bundesamt für Eich- und Vermessungswesen, online available at: http://www.bev.gv.at/, 2009.

5. Brockmann, H. and Mandlburger, G.: Modelling a watercourse DTM based on airborne laser-scanner data – using the example of the River Oder along the German/Polish Border, in: Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3