Large-Scale Two-Dimensional Cascade Modeling of the Odra River for Flood Hazard Management

Author:

Banasiak Robert1ORCID

Affiliation:

1. Institute of Meteorology and Water Management—National Research Institute, ul. Podleśna 61, 01-673 Warszawa, Poland

Abstract

Large-scale two-dimensional hydrodynamic modeling at high resolution is still rarely performed because of its high computational cost and the lack of topographical data for some areas. Despite this, such modeling has been performed for the Odra River, the second largest river in Poland. This river has a high potential for flooding, which has been severely experienced many times in history, most recently in 1997 and 2010, when floods caused large losses. Since then, many different types of activities have been executed in order to reduce the risk of flooding. The paper presents a 2D modeling concept created during these activities. Given that the river valley is up to several kilometers wide, and consists of many complex topographical features and hydrotechnical facilities, a cascade of 25 2D models in MIKE21 software was developed. It covers a 600 km long section of the Odra River and an area of 5700 km2 in total. A regular grid resolution of 4–6 m was used in the modeling. The models were applied for numerous purposes, first for the elaboration of flood hazard and flood risk maps for larger cities, and then for the verification of historic flood data and stage–discharge relations at gauge stations, as well as the verification of design discharges via flood routing. Other important uses were the evaluation of the effectiveness of flood mitigating works, including the feasibility study for the Racibórz reservoir, and the assessment of flood hazard due to embankment failure or ice jamming. Selected applications, as well as practical aspects of the model’s preparation and use, are presented.

Funder

ISOK project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference76 articles.

1. Flood risk and climate change: Global and regional perspectives;Kundzewicz;Hydrol. Sci. J.,2013

2. Understanding flood regime changes in Europe: A state-of-the-art assessment;Hall;Hydrol. Earth Syst. Sci.,2014

3. Quantitative flood hazard assessment methods: A review;Maranzoni;J. Flood Risk Manag.,2022

4. Tritthart, M. (2021). Advanced Modeling Strategies for Hydraulic Engineering and River Research. Water, 13.

5. Bates, P.D. (2006). Encyclopedia of Hydrological Sciences, Part 11, Rainfall-Runoff Modeling, John Wiley & Sons, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3