Information reuse of nondestructive evaluation (NDE) data sets
-
Published:2024-05-15
Issue:1
Volume:13
Page:99-108
-
ISSN:2194-878X
-
Container-title:Journal of Sensors and Sensor Systems
-
language:en
-
Short-container-title:J. Sens. Sens. Syst.
Author:
Leinenbach Frank,Stumm Christopher,Krieg Fabian,Schneider Aaron
Abstract
Abstract. To achieve added value from data spaces and data sets in general, an essential condition is to ensure the high quality of the stored information and its continuous availability. Nondestructive evaluation (NDE) processes represent an information source with potential for reuse. These provide essential information for the evaluation and characterization of materials and components. This information, along with others such as process parameters, is a valuable resource for data-driven added value, e.g., for process optimization or as training data for artificial intelligence (AI) applications. However, this use requires the continuous availability of NDE data sets as well as their structuring and readability. This paper describes the steps necessary to realize an NDE data cycle from the generation of information to the reuse of data.
Publisher
Copernicus GmbH
Reference39 articles.
1. Bach, C., Kundisch, D., Neumann, J., Schlangenotto, D., and Whittaker, M.: Dokumentenorientierte NoSQL-Datenbanken in skalierbaren Webanwendungen, HMD Praxis Der Wirtschaftsinformatik, 53, 486–498, https://doi.org/10.1365/s40702-016-0229-6, 2016. 2. Böttger, D., Stampfer, B., Gauder, D., Straß, B., Häfner, B., Lanza, G., Schulze, V., and Wolter, B.: Concept for soft sensor structure for turning processes of AISI4140: DFG priority program 2086, project: In-process soft sensor for surface-conditioning during longitudinal turning of AISI4140, tm – Technisches Messen, 87, 745–756, https://doi.org/10.1515/teme-2020-0054, 2020. 3. Brierley, N., Casperson, R., Engert, D., Heilmann, S., Herold, F., Hofmann, D., Küchler, H., Leinenbach, F., Lorenz, S., Martin, J., Rehbein, J., Sprau, B., Suppes, A., Vrana, J., and Wild, E.: Specification ZfP 4.0 – 01E: DICONDE in Industrial Inspection, DGZfP e.V, Berlin, ISBN: 978-3-947971-32-9, 2023. 4. Bruder, I., Klettke, M., Möller, M., Meyer, F., Heuer, A., Jürgensmann, S., and Feistel, S.: Daten wie Sand am Meer – Datenerhebung, -strukturierung, -management und Data Provenance für die Ostseeforschung, Datenbank Spektrum, 17, 183–196, https://doi.org/10.1007/s13222-017-0259-4, 2017. 5. Dietrich, E.: Geeignete Messprozesse – Valide Informationen, tm – Technisches Messen, 86, 528–539, https://doi.org/10.1515/teme-2019-0104, 2019.
|
|