Abstract
Abstract. Errors in gas concentration measurements by infrared gas analysers can occur during eddy-covariance campaigns, associated with actual or apparent instrumental drifts or biases due to thermal expansion, dirt contamination, aging of components or errors in field operations. If occurring on long timescales (hours to days), these errors are normally ignored during flux computation, under the assumption that errors in mean gas concentrations do not affect the estimation of turbulent fluctuations and, hence, of covariances. By analysing instrument theory of operation, and using numerical simulations and field data, we show that this is not the case for instruments with curvilinear calibrations; we further show that if not appropriately accounted for, concentration biases can lead to roughly proportional systematic flux errors, where the fractional errors in fluxes are about 30–40% the fractional errors in concentrations. We quantify these errors and characterize their dependency on main determinants. We then propose a correction procedure that largely – potentially completely – eliminates these errors. The correction, to be applied during flux computation, is based on knowledge of instrument calibration curves and on field or laboratory calibration data. Finally, we demonstrate the occurrence of such errors and validate the correction procedure by means of a field experiment, and accordingly provide recommendations for in situ operations.
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference27 articles.
1. Arriga, N., Boschi, A., Tomassucci, M., Fratini, G., and Papale, D.: Uncertainty in eddy-covariance measurements due to instrumental setup and field deployment, in preparation, 2014.
2. Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht Heidelberg London New York, 460 pp., 2012.
3. Baldocchi, D.: "Breathing" of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust J. Bot., 56, 1–26, 2008.
4. Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M.: The challenges of measuring methane fluxes and concentrations over a peatland pasture., Agric. For. Meterol., 153, 177–187, 2012.
5. Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, 2003.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献