Optimal Frequency-Response Corrections for Eddy Covariance Flux Measurements Using the Wiener Deconvolution Method

Author:

Emad AnasORCID

Abstract

AbstractWe describe a new direct correction approach to accurately restore frequency attenuated eddy covariance (EC) measurements. The new approach utilizes the Wiener deconvolution method to optimally estimate the original signal from noisy atmospheric measurements. Key features over conventional EC spectral correction methods include (i) the use of physics-based response functions, (ii) the ability to account for the non-linear phase contributions, and (iii) the direct restoration of the original signal rather than simulating the effect on an ideal reference spectrum. The new correction approach is compared to conventional spectral correction methods in a numerical simulation where the magnitude of the key limitations of conventional methods is explored under conditions relevant to common EC set-ups. The simulation results showed that the spectral correction methods commonly used for calculating EC fluxes introduced systematic error up to 10% to the restored fluxes and substantially increased their random uncertainty. The errors are attributed to the effect of using inappropriate response functions, failing to account for the contribution of the non-linear phase, and due to the assumption of spectral similarity on the scale of averaging intervals. The Wiener deconvolution method is versatile, can be applied under non-ideal conditions, and provides an opportunity to unify analytical and “in-situ” spectral correction methods by applying existing transfer functions to directly restore attenuated spectra. Furthermore, the Wiener deconvolution approach is adaptable for use with various micrometeorological measurement techniques such as eddy accumulation and flux profile measurements.

Funder

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3