Measurements of OH and HO<sub>2</sub> concentrations during the MCMA-2006 field campaign – Part 2: Model comparison and radical budget

Author:

Dusanter S.,Vimal D.,Stevens P. S.,Volkamer R.,Molina L. T.,Baker A.,Meinardi S.,Blake D.,Sheehy P.,Merten A.,Zhang R.,Zheng J.,Fortner E. C.,Junkermann W.,Dubey M.,Rahn T.,Eichinger B.,Lewandowski P.,Prueger J.,Holder H.

Abstract

Abstract. Measurements of hydroxyl (OH) and hydroperoxy (HO2) radicals were made during the Mexico City Metropolitan Area (MCMA) field campaign as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) project during March 2006. These measurements provide a unique opportunity to test current models of atmospheric ROx (OH + HO2 + RO2) photochemistry under polluted conditions. A zero-dimensional box model based on the Regional Atmospheric Chemical Mechanism (RACM) was constrained by 10-min averages of 24 J-values and the concentrations of 97 chemical species. Several issues related to the ROx chemistry under polluted conditions are highlighted in this study: (i) Measured concentrations of both OH and HO2 were underpredicted during morning hours on a median campaign basis, suggesting a significant source of radicals is missing from current atmospheric models under polluted conditions, consistent with previous urban field campaigns. (ii) The model-predicted HO2/OH ratios underestimate the measurements for NO mixing ratios higher than 5 ppb, also consistent with previous urban field campaigns. This suggests that under high NOx conditions, the HO2 to OH propagation rate may be overestimated by the model or a process converting OH into HO2 may be missing from the chemical mechanism. On a daily basis (08:40 a.m.–06:40 p.m.), an analysis of the radical budget indicates that HONO photolysis, HCHO photolysis, O3-alkene reactions and dicarbonyls photolysis are the main radical sources. O3 photolysis contributes to less than 6% of the total radical production.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3