A network of magnetometers for multi-scale urban science and informatics
-
Published:2019-05-08
Issue:1
Volume:8
Page:129-138
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Bowen Trevor A., Zhivun Elena, Wickenbrock Arne, Dumont Vincent, Bale Stuart D.ORCID, Pankow Christopher, Dobler Gregory, Wurtele Jonathan S., Budker Dmitry
Abstract
Abstract. The magnetic signature of an urban environment is investigated using a
geographically distributed network of fluxgate magnetometers deployed in and
around Berkeley, California. The system hardware and software are described
and initial operations of the network are reported. The sensors measure
vector magnetic fields at a 3960 Hz sample rate and are sensitive to
0.1 nT/Hz. Data from individual stations are
synchronized to ±120 µs using global positioning system (GPS) and computer system clocks
and automatically uploaded to a central server. We present the initial
observations of the network and preliminary efforts to correlate
sensors. A wavelet analysis is used to study observations of the urban
magnetic field over a wide range of temporal scales. The Bay Area Rapid
Transit (BART) is identified as the dominant signal in our observations,
exhibiting aspects of both broadband noise and coherent periodic features.
Significant differences are observed in both day–night and weekend–weekday
signatures. A superposed epoch analysis is used to study and extract the BART
signal.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference27 articles.
1. Abbott, B. P., Abbott, R., Abbott, T. D., et al.: Observation of
Gravitational Waves from a Binary Black Hole
Merger, Phys. Rev. Lett., 116, 061102,
https://doi.org/10.1103/PhysRevLett.116.061102, 2016. a 2. Abbott, B. P., Abbott, R., Abbott, T. D., et al.: Multi-messenger
Observations of a Binary Neutron Star Merger, Astrophys. J. Lett., 848, L12,
https://doi.org/10.3847/2041-8213/aa91c9, 2017. a 3. Abramovici, A., Althouse, W. E., Drever, R. W. P., Gursel, Y.,
Kawamura, S., Raab, F. J., Shoemaker, D., Sievers, L., Spero,
R. E., Thorne, K. S., Vogt, R. E., Weiss, R., Whitcomb, S. E., and
Zucker, M. E.: LIGO – The Laser Interferometer Gravitational-Wave
Observatory, Science, 256, 325–333, https://doi.org/10.1126/science.256.5055.325,
1992. a 4. Afach, S., Budker, D., DeCamp, G., Dumont, V., Grujić, Z. D.,
Guo, H., Kimball, D. F. J., Kornack, T. W., Lebedev, V., Li, W.,
Masia-Roig, H., Nix, S., Padniuk, M., Palm, C. A., Pankow, C.,
Penaflor, A., Peng, X., Pustelny, S., Scholtes, T., Smiga, J. A.,
Stalnaker, J. E., Weis, A., Wickenbrock, A., and Wurm, D.:
Characterization of the global network of optical magnetometers to search for
exotic physics (GNOME), Phys. Dark Universe, 22, 162–180,
https://doi.org/10.1016/j.dark.2018.10.002, 2018. a 5. Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|