Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter

Author:

Kompalli Sobhan KumarORCID,Babu Surendran Nair Suresh,Moorthy Krishnaswamy KrishnaORCID,Satheesh Sreedharan Krishnakumari,Gogoi Mukunda Madhab,Nair Vijayakumar S.ORCID,Jayachandran Venugopalan NairORCID,Liu DantongORCID,Flynn Michael J.,Coe Hugh

Abstract

Abstract. Regional climatic implications of aerosol black carbon (BC), which has a wide variety of anthropogenic sources in large abundance, are well recognized over South Asia. Significant uncertainties remain in its quantification due to a lack of sufficient information on the microphysical properties (its concentration, size, and mixing state with other aerosol components) that determine the absorption potential of BC. In particular, the information on the mixing state of BC is extremely sparse over this region. In this study, the first observations of the size distribution and mixing state of individual refractory black carbon (rBC) particles in the South Asian outflow to the south-eastern Arabian Sea and the northern and equatorial Indian Ocean regions are presented based on measurements using a single particle soot photometer (SP2) aboard the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB-2018) ship during winter 2018 (16 January to 13 February). The results revealed significant spatial heterogeneity of BC characteristics. The highest rBC mass concentrations (∼938±293 ng m−3) with the highest relative coating thickness (RCT; the ratio of BC core to its coating diameters) of ∼2.16±0.19 are found over the south-east Arabian Sea (SEAS) region, which is in the proximity of the continental outflow. As we move to farther oceanic regions, though the mass concentrations decreased by nearly half (∼546±80 ng m−3), BC still remained thickly coated (RCT∼2.05±0.07). The air over the remote equatorial Indian Ocean, which received considerable marine air masses compared to the other regions, showed the lowest rBC mass concentrations (∼206±114 ng m−3) with a moderately thick coating (RCT∼1.73±0.16). Even over oceanic regions far from the landmass, regions that received the outflow from the more industrialized east coast/the Bay of Bengal had a thicker coating (∼104 nm) compared to regions that received outflow from the west coast and/or peninsular India (∼86 nm). Although different regions of the ocean depicted contrasting concentrations and mixing state parameters due to the varied extent and nature of the continental outflow as well as the atmospheric lifetime of air masses, the modal parameters of rBC mass–size distributions (mean mass median diameters ∼ 0.19–0.20 µm) were similar over all regions. The mean fraction of BC-containing particles (FBC) varied in the range of 0.08–0.12 (suggesting significant amounts of non-BC particles), whereas the bulk mixing ratio of coating mass to rBC mass was highest (8.31±2.40) over the outflow regions compared to the remote ocean (4.24±1.45), highlighting the role of outflow in providing condensable material for coatings on rBC. These parameters, along with the information on the size-resolved mixing state of BC cores, throw light on the role of sources and secondary processing of their complex mixtures for coatings on BC under highly polluted conditions. Examination of the non-refractory sub-micrometre aerosol chemical composition obtained using the aerosol chemical speciation monitor (ACSM) suggested that the overall aerosol system was sulfate-dominated over the far-oceanic regions. In contrast, organics were equally prominent adjacent to the coastal landmass. An association between the BC mixing state and aerosol chemical composition suggested that sulfate was the probable dominant coating material on rBC cores.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3