Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications

Author:

Mohrmann JohannesORCID,Wood RobertORCID,Yuan TianleORCID,Song HuaORCID,Eastman Ryan,Oreopoulos LazarosORCID

Abstract

Abstract. Marine low-cloud mesoscale morphology in the southeastern Pacific Ocean is analyzed using a large dataset of classifications spanning 3 years generated by machine learning methods. Meteorological variables and cloud properties are composited by the mesoscale cloud type of the classification, showing distinct meteorological regimes of marine low-cloud organization from the tropics to the midlatitudes. The presentation of mesoscale cellular convection, with respect to geographic distribution, boundary layer structure, and large-scale environmental conditions, agrees with prior knowledge. Two tropical and subtropical cumuliform boundary layer regimes, suppressed cumulus and clustered cumulus, are studied in detail. The patterns in precipitation, circulation, column water vapor, and cloudiness are consistent with the representation of marine shallow mesoscale convective self-aggregation by large eddy simulations of the boundary layer. Although they occur under similar large-scale conditions, the suppressed and clustered low-cloud types are found to be well separated by variables associated with low-level mesoscale circulation, with surface wind divergence being the clearest discriminator between them, regardless of whether reanalysis or satellite observations are used. Clustered regimes are associated with surface convergence, while suppressed regimes are associated with surface divergence.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3