Thin Clouds Control the Cloud Radiative Effect Along the Sc‐Cu Transition

Author:

Choudhury Goutam1ORCID,Goren Tom12ORCID

Affiliation:

1. Department of Geography and Environment Bar‐Ilan University Ramat Gan Israel

2. Institute for Meteorology Leipzig University Leipzig Germany

Abstract

AbstractIn situ and spaceborne studies reveal the prevalence of thin clouds in the major Stratocumulus‐to‐Cumulus Transition (SCT) regions. Using instantaneous satellite and reanalysis data, this study investigates the properties of thin clouds in the Southeast Pacific Ocean and their impact on the cloud radiative effect (CRE). Our findings demonstrate that thin clouds are intrinsic to the SCT. The overcast stratocumulus‐dominated regime exhibits a minimal presence of thin clouds, which become notably prominent after the clouds breakup into the cumulus‐dominated regime. The regime dependence of the occurrence of thin clouds is also observed in terms of the marine cold‐air outbreak parameter and the sea surface temperature. Thin clouds at a given cloud cover significantly modulate the shortwave (SW) and longwave (LW) components of CRE. SW CRE decreases by 46 %–65 % with increasing thin cloud cover. They account for a larger variance in cloud albedo than the combined influence of the liquid water path and effective radius. Furthermore, LW CRE decreases by about 12 %–52 % with thin cloud cover. An increase in the fraction of thin clouds also leads to a larger fraction of negative SW CRE offset by positive LW CRE at a given cloud cover. This LW compensation ranges from approximately 8 % at overcast cloud cover to as much as 19 % at about 50 % cloud cover. These findings elucidate the crucial role of thin clouds, and thus cloud morphology, in modulating CRE and underscore the necessity of their accurate representation in climate models.

Funder

Bar-Ilan University

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Reference86 articles.

1. Alinaghi P. Janssens M. Choudhury G. Goren T. Siebesma A. P. &Glassmeier F.(2023).Shallow cumulus cloud fields are optically thicker when they are more clustered.https://doi.org/10.48550/arXiv.2309.08346

2. Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere

3. A least squares method for fitting intercepting line segments to a set of data points.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3