Measurement report: An assessment of the impact of a nationwide lockdown on air pollution – a remote sensing perspective over India

Author:

Pathakoti Mahesh,Muppalla Aarathi,Hazra Sayan,D. Venkata Mahalakshmi,A. Lakshmi Kanchana,K. Sagar VijayORCID,Shekhar RajaORCID,Jella Srinivasulu,M. V. Rama Sesha Sai,Vijayasundaram UmaORCID

Abstract

Abstract. The nationwide lockdown was imposed over India from 25 March to 31 May 2020 with varied relaxations from phase I to phase IV to contain the spread of COVID-19. Thus, emissions from industrial and transport sectors were halted during lockdown (LD), which has resulted in a significant reduction of anthropogenic pollutants. The first two lockdown phases were strictly implemented (phase I and phase II) and hence were considered to be total lockdown (TLD) in this study. Satellite-based tropospheric columnar nitrogen dioxide (TCN) from the years 2015 to 2020, tropospheric columnar carbon monoxide (TCC) during 2019/20, and aerosol optical depth (AOD550) from the years 2014 to 2020 during phase I and phase II LD and pre-LD periods were investigated with observations from Aura OMI, Sentinel-5P TROPOMI, and Aqua and Terra MODIS. To quantify lockdown-induced changes in TCN, TCC, and AOD550, detailed statistical analysis was performed on de-trended data using the Student paired statistical t test. Results indicate that mean TCN levels over India showed a dip of 18 % compared to the previous year and also against the 5-year mean TCN levels during the phase I lockdown, which was found to be statistically significant (p value < 0.05) against the respective period. Furthermore, drastic changes in TCN levels were observed over hotspots, namely eastern region and urban cities. For example, there was a sharp decrease of 62 % and 54 % in TCN levels compared to 2019 and against 5-year mean TCN levels over New Delhi with a p value of 0.0002 (which is statistically significant) during total LD. The TCC levels were high in the northeast (NE) region during the phase I LD period, which is mainly attributed to the active fire counts in this region. However, lower TCC levels are observed in the same region due to the diminished fire counts during phase II. Further, AOD550 is reduced over the country by ∼ 16 % (Aqua and Terra) from the 6-year (2014–2019) mean AOD550 levels, with a significant reduction (Aqua MODIS 28 %) observed over the Indo-Gangetic Plain (IGP) region with a p value of ≪ 0.05. However, an increase in AOD550 levels (25 % for Terra MODIS, 15 % for Aqua MODIS) was also observed over central India during LD compared to the preceding year and found significant with a p value of 0.03. This study also reports the rate of change of TCN levels and AOD550 along with statistical metrics during the LD period.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference39 articles.

1. Beig, G., Korhale, N., Rathod, A., Maji, S., Sahu, S. K., Dole, S., Latha, R., and Murthy, B. S.: On modelling growing menace of household emissions Under COVID-19 in Indian Metros, Environ. Pollut., 272, 115993, https://doi.org/10.1016/j.envpol.2020.115993, 2021.

2. Berman, J. D. and Ebisu, K.: Changes in US air pollution during the COVID-19 pandemic, Sci. Total Environ., 739, 139864, https://doi.org/10.1016/j.scitotenv.2020.139864, 2020.

3. Biswal, A., Singh, T., Singh, V., Ravindra, K., and Mor, S.: COVID-19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data, Heliyon, 6, e04764. https://doi.org/10.1016/j.heliyon.2020.e04764, 2020.

4. Biswal, A., Singh, V., Singh, S., Kesarkar, A. P., Ravindra, K., Sokhi, R. S., Chipperfield, M. P., Dhomse, S. S., Pope, R. J., Singh, T., and Mor, S.: COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations, Atmos. Chem. Phys., 21, 5235–5251, https://doi.org/10.5194/acp-21-5235-2021, 2021.

5. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, available at: https://www.ipcc.ch/report/ar5/ (last access: 5 October 2017), 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3