Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid- and high latitudes
-
Published:2021-06-15
Issue:11
Volume:21
Page:9065-9088
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Williamson Christina J.ORCID, Kupc AgnieszkaORCID, Rollins Andrew, Kazil JanORCID, Froyd Karl D.ORCID, Ray Eric A., Murphy Daniel M., Schill Gregory P.ORCID, Peischl JeffORCID, Thompson ChelseaORCID, Bourgeois IlannORCID, Ryerson Thomas B.ORCID, Diskin Glenn S.ORCID, DiGangi Joshua P.ORCID, Blake Donald R., Bui Thao Paul V., Dollner MaximilianORCID, Weinzierl BernadettORCID, Brock Charles A.ORCID
Abstract
Abstract. The details of aerosol processes and size distributions
in the stratosphere are important for both heterogeneous chemistry and
aerosol–radiation interactions. Using in situ, global-scale measurements of
the size distribution of particles with diameters > 3 nm from the
NASA Atmospheric Tomography Mission (ATom), we identify a mode of aerosol
smaller than 12 nm in the lowermost stratosphere (LMS) at mid- and high
latitudes. This mode is substantial only in the Northern Hemisphere (NH)
and was observed in all four seasons. We also observe elevated SO2, an
important precursor for new particle formation (NPF) and growth, in the NH
LMS. We use box modelling and thermodynamic calculations to show that NPF
can occur in the LMS conditions observed on ATom. Aircraft emissions are
shown as likely sources of this SO2, as well as a potential source of
nucleation mode particles directly emitted by or formed in the plume of the
engines. These nucleation mode particles have the potential to grow to
larger sizes and to coagulate with larger aerosol, affecting heterogeneous
chemistry and aerosol–radiation interactions. Understanding all sources and
characteristics of stratospheric aerosols is important in the context of
anthropogenic climate change as well as proposals for climate intervention
via stratospheric sulfur injection. This analysis not only adds to the,
currently sparse, observations of the global impact of aviation, but also
introduces another aspect of climate influence, namely a size distribution
shift of the background aerosol distribution in the LMS.
Funder
National Aeronautics and Space Administration National Oceanic and Atmospheric Administration Austrian Science Fund H2020 European Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference127 articles.
1. Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta,
O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M.,
David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J.,
Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A.,
Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M.,
Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N.,
Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V.,
Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T.,
Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo,
L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer,
R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F.,
Tome, A., Trostl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y.,
Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H.,
Williamson, C., Wimmer, D., Ye, P. L., Yli-Juuti, T., Carslaw, K. S.,
Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H.,
and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle
nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. 2. Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J.,
Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M.,
Baltensperger, U., Zieger, P., and Schmale, J.: Frequent new particle
formation over the high Arctic pack ice by enhanced iodine emissions,
Nat. Commun., 11, 4924, https://doi.org/10.1038/s41467-020-18551-0, 2020. 3. Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and
Turekian, K. K.: Transport and residence times of tropospheric aerosols
inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res.-Atmos., 98, 20573–20586, https://doi.org/10.1029/93JD02456, 1993. 4. Ball, S. M., Hanson, D. R., Eisele, F. L., and McMurry, P. H.: Laboratory
studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res.-Atmos., 104, 23709–23718, https://doi.org/10.1029/1999JD900411, 1999. 5. Bianchi, F., Trostl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R.,
Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy,
J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kurten, A.,
Manninen, H. E., Munch, S., Perakyla, O., Petaja, T., Rondo, L., Williamson,
C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M., Dommen, J.,
and Baltensperger, U.: New particle formation in the free troposphere: A
question of chemistry and timing, Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|