Global meteorological drought – Part 1: Probabilistic monitoring

Author:

Dutra E.ORCID,Wetterhall F.,Di Giuseppe F.ORCID,Naumann G.ORCID,Barbosa P.,Vogt J.ORCID,Pozzi W.ORCID,Pappenberger F.ORCID

Abstract

Abstract. Near-real time drought monitoring can provide decision makers valuable information for use in several areas, such as water resources management, or international aid. One of the main constrains of assessing the current drought situation is associated with the lack of reliable sources of observed precipitation on a global scale available in near-real time. Furthermore, monitoring systems also need a long record of past observations to provide mean climatological conditions. To address these problems a novel probabilistic drought monitoring methodology based on ECMWF probabilistic forecasts is presented where probabilistic monthly means of precipitation were derived from short-range forecasts and merged with the long term climatology of the Global Precipitation Climatology Centre (GPCC) dataset. From the merged dataset, the Standardized Precipitation Index (SPI) was estimated. This methodology was compared with the GPCC first guess precipitation product and also SPI calculations using the ECMWF ERA-Interim reanalysis and Tropical Rainfall Measuring Mission (TRMM) precipitation datasets. ECMWF probabilistic forecasts for near-real time monitoring are similar to GPCC and TRMM in terms of correlation and root mean square errors, with the added value of including an estimate of the uncertainty given by the ensemble spread. The real time availability of this product and its stability, i.e. that it does not depend directly on local rain-gauges or single satellite products, are also beneficial in light of an operational implementation.

Funder

European Commission

Publisher

Copernicus GmbH

Reference36 articles.

1. Belo-Pereira, M., Dutra, E., and Viterbo, P.: Evaluation of global precipitation data sets over the Iberian Peninsula, J. Geophys. Res., 116, D20101, https://doi.org/10.1029/2010jd015481, 2011.

2. Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., and Vitart, F.: The new ECMWF VAREPS (Variable Resolution Ensemble Prediction System), Q. J. Roy. Meteorol. Soc., 133, 681–695, https://doi.org/10.1002/qj.75, 2007.

3. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.

4. Di Giuseppe, F., Molteni, F., and Tompkins, A. M.: A rainfall calibration methodology for impacts modelling based on spatial mapping, Q. J. Roy. Meteorol. Soc., 139, 1389–1401, https://doi.org/10.1002/qj.2019, 2013a.

5. Di Giuseppe, F., Molteni, F., and Dutra, E.: Real-time correction of ERA-Interim monthly rainfall, Geophys. Res. Lett., 40, 3750–3755, https://doi.org/10.1002/grl.50670, 2013b.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3