Global Meteorological Drought Prediction Using the North American Multi-Model Ensemble

Author:

Mo Kingtse C.1,Lyon Bradfield2

Affiliation:

1. Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

2. International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, New York

Abstract

Abstract Precipitation forecasts from six climate models in the North American Multi-Model Ensemble (NMME) are combined with observed precipitation data to generate forecasts of the standardized precipitation index (SPI) for global land areas, and their skill was evaluated over the period 1982–2010. The skill of monthly precipitation forecasts from the NMME is also assessed. The value-added utility in using the NMME models to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on the inherent persistence characteristics of the SPI itself. As expected, skill of the NMME-generated SPI forecasts depends on the season, location, and specific index considered (the 3- and 6-month SPI were evaluated). In virtually all locations and seasons, statistically significant skill is found at lead times of 1–2 months, although the skill comes largely from initial conditions. Added skill from the NMME is primarily in regions exhibiting El Niño–Southern Oscillation (ENSO) teleconnections. Knowledge of the initial drought state is critical in SPI prediction, and there are considerable differences in observed SPI values between different datasets. Root-mean-square differences between datasets can exceed typical thresholds for drought, particularly in the tropics. This is particularly problematic for precipitation products available in near–real time. Thus, in the near term, the largest advances in the global prediction of meteorological drought are obtainable from improvements in near-real-time precipitation observations for the globe. In the longer term, improvements in precipitation forecast skill from dynamical models will be essential in this effort.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3