One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models

Author:

Strada S.,Freitas S. R.ORCID,Mari C.,Longo K. M.,Paugam R.ORCID

Abstract

Abstract. Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is still poorly accounted in chemistry transport models for which fires are sub-grid scale processes which need to be parametrised. Only recently, physically-based approaches for estimating the fire injection heights have been developed which consider both the convective updrafts induced by the release of fire sensible heat and the impact of background meteorological environment on the fire convection dynamics. In this work, two different models are used to simulate fire injection heights in contrasted meteorological scenarios: a Mediterranean arson fire and two Amazonian deforestation fires. A Eddy-Diffusivity/Mass-Flux approach, formerly developed to reproduce convective boundary layer in the non-hydrostatic meteorological model Meso-NH, is compared to the 1-D Plume Rise Model. For both models, radiosonde data and re-analyses from the European Center for Medium-Range Weather Forecasts (ECMWF) have been used as initial conditions to explore the sensitivity of the models responses to different meteorological forcings. The two models predict injection heights for the Mediterranean fire between 1.7 and 3.3 km with the Meso-NH/EDMF model systematically higher than the 1-D PRM model. Both models show a limited sensitivity to the meteorological forcings with a 20–30% difference in the injection height between radiosondes and ECMWF data for this case. Injection heights calculated for the two Amazonian fires ranges from 5 to 6.5 km for the 1-D PRM model and from 2 to 4 km for the Meso-NH/EDMF model. The difference of smoke plume heights between the two models can reach 3–4 km. A large difference is obtained for the windy-wet Amazonian fire by the 1-D PRM model with a injection height 1.5 km higher when ECMWF re-analyses are used compared to the run with the radiosonde forcing. For the Mediterranean case, both models forecast a plume injection height above the boundary layer, although there are evidences that this particular fire propagated near the surface, highlighting the current limitations of the two approaches.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3