A framework to evaluate and elucidate the driving mechanisms of coastal sea surface <i>p</i>CO<sub>2</sub> seasonality using an ocean general circulation model (MOM6-COBALT)
-
Published:2022-01-10
Issue:1
Volume:18
Page:67-88
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Author:
Roobaert Alizée, Resplandy Laure, Laruelle Goulven G.ORCID, Liao Enhui, Regnier Pierre
Abstract
Abstract. The temporal variability of the sea surface partial pressure of CO2
(pCO2) and the underlying processes driving this variability are poorly
understood in the coastal ocean. In this study, we tailor an existing method
that quantifies the effects of thermal changes, biological activity, ocean
circulation and freshwater fluxes to examine seasonal pCO2 changes in
highly variable coastal environments. We first use the Modular Ocean Model
version 6 (MOM6) and biogeochemical module Carbon Ocean Biogeochemistry And
Lower Trophics version 2 (COBALTv2) at a half-degree resolution to simulate
coastal CO2 dynamics and evaluate them against pCO2 from the
Surface Ocean CO2 Atlas database (SOCAT) and from the continuous
coastal pCO2 product generated from SOCAT by a two-step neuronal
network interpolation method (coastal Self-Organizing Map Feed-Forward neural Network SOM-FFN, Laruelle et al., 2017). The
MOM6-COBALT model reproduces the observed spatiotemporal
variability not only in pCO2 but also in sea surface temperature, salinity and
nutrients in most coastal environments, except in a few specific regions
such as marginal seas. Based on this evaluation, we identify coastal regions
of “high” and “medium” agreement between model and coastal SOM-FFN where the
drivers of coastal pCO2 seasonal changes can be examined with
reasonable confidence. Second, we apply our decomposition method in three
contrasted coastal regions: an eastern (US East Coast) and a western (the
Californian Current) boundary current and a polar coastal region (the
Norwegian Basin). Results show that differences in pCO2 seasonality in
the three regions are controlled by the balance between ocean circulation and
biological and thermal changes. Circulation controls the pCO2 seasonality in the Californian Current; biological activity controls
pCO2 in the Norwegian Basin; and the interplay between biological
processes and thermal and circulation changes is key on the US East Coast.
The refined approach presented here allows the attribution of pCO2 changes with small residual biases in the coastal ocean, allowing for future
work on the mechanisms controlling coastal air–sea CO2 exchanges and
how they are likely to be affected by future changes in sea surface
temperature, hydrodynamics and biological dynamics.
Publisher
Copernicus GmbH
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference75 articles.
1. Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C.
O., Dunne, J. P., Griffies, S. M., Hallberg, R., Harrison, M. J., Held, I.
M., Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg,
S., Liang, Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T.,
Samuels, B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T.,
Xiang, B., Zadeh, N., and Zhang, R.: The GFDL Global Ocean and Sea Ice Model
OM4.0: Model Description and Simulation Features, J. Adv. Model. Earth
Sy., 11, 3167–3211, https://doi.org/10.1029/2019MS001726, 2019. 2. Arruda, R., Calil, P. H. R., Bianchi, A. A., Doney, S. C., Gruber, N., Lima, I., and Turi, G.: Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study, Biogeosciences, 12, 5793–5809, https://doi.org/10.5194/bg-12-5793-2015, 2015. 3. Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016 (data available at: https://www.socat.info/index.php/previous-versions/, last access: March 2021). 4. Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and
sources of CO2 in the coastal ocean: Diversity of ecosystem counts,
Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023053, 2005. 5. Bourgeois, T., Orr, J. C., Resplandy, L., Terhaar, J., Ethé, C., Gehlen, M., and Bopp, L.: Coastal-ocean uptake of anthropogenic carbon, Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016, 2016.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|