Affiliation:
1. Department of Geosciences Environment & Society‐BGEOSYS Université Libre de Bruxelles Brussels Belgium
2. Department of Geosciences Princeton University Princeton NJ USA
3. Flanders Marine Institute (VLIZ) Ostend Belgium
4. High Meadows Environmental Institute Princeton University Princeton NJ USA
5. School of Oceanography Shanghai Jiao Tong University Shanghai China
Abstract
AbstractThe drivers governing the air‐sea CO2 exchange and its variability in the coastal ocean are poorly understood. Using a global ocean biogeochemical model, this study quantifies the influences of thermal changes, oceanic transport, freshwater fluxes, and biological activity on the spatial and seasonal variability of CO2 sources/sinks in the global coastal ocean. We identify five typical coastal behaviors (dominated by biological drawdown, vertical transport, land imprint, intracoastal alongshore currents, and weak CO2 sources and sinks coastal regions) and propose a new processed‐based delineation of the coastal ocean based on the quantification of these controlling processes. We find that the spatiotemporal variability of CO2 sources/sinks is dominated by strong exchanges with the open ocean and intracoastal processes, while continental influences are restricted to hotspot regions. In addition, where thermal changes appear to drive the seasonal CO2 variability, it often results from compensating effects between individual non‐thermal terms, especially biological drawdown and vertical transport.
Funder
Belgian Federal Science Policy Office
Horizon 2020 Framework Programme
Fonds De La Recherche Scientifique - FNRS
Publisher
American Geophysical Union (AGU)