Gas chromatography vs. quantum cascade laser-based N<sub>2</sub>O flux measurements using a novel chamber design

Author:

Brümmer ChristianORCID,Lyshede Bjarne,Lempio Dirk,Delorme Jean-Pierre,Rüffer Jeremy J.,Fuß RolandORCID,Moffat Antje M.ORCID,Hurkuck Miriam,Ibrom AndreasORCID,Ambus Per,Flessa Heinz,Kutsch Werner L.ORCID

Abstract

Abstract. Recent advances in laser spectrometry offer new opportunities to investigate the soil–atmosphere exchange of nitrous oxide. During two field campaigns conducted at a grassland site and a willow field, we tested the performance of a quantum cascade laser (QCL) connected to a newly developed automated chamber system against a conventional gas chromatography (GC) approach using the same chambers plus an automated gas sampling unit with septum capped vials and subsequent laboratory GC analysis. Through its high precision and time resolution, data of the QCL system were used for quantifying the commonly observed nonlinearity in concentration changes during chamber deployment, making the calculation of exchange fluxes more accurate by the application of exponential models. As expected, the curvature values in the concentration increase was higher during long (60 min) chamber closure times and under high-flux conditions (FN2O > 150 µg N m−2 h−1) than those values that were found when chambers were closed for only 10 min and/or when fluxes were in a typical range of 2 to 50 µg N m−2 h−1. Extremely low standard errors of fluxes, i.e., from  ∼  0.2 to 1.7 % of the flux value, were observed regardless of linear or exponential flux calculation when using QCL data. Thus, we recommend reducing chamber closure times to a maximum of 10 min when a fast-response analyzer is available and this type of chamber system is used to keep soil disturbance low and conditions around the chamber plot as natural as possible. Further, applying linear regression to a 3 min data window with rejecting the first 2 min after closure and a sampling time of every 5 s proved to be sufficient for robust flux determination while ensuring that standard errors of N2O fluxes were still on a relatively low level. Despite low signal-to-noise ratios, GC was still found to be a useful method to determine the mean the soil–atmosphere exchange of N2O on longer timescales during specific campaigns. Intriguingly, the consistency between GC and QCL-based campaign averages was better under low than under high N2O efflux conditions, although single flux values were highly scattered during the low efflux campaign. Furthermore, the QCL technology provides a useful tool to accurately investigate the highly debated topic of diurnal courses of N2O fluxes and its controlling factors. Our new chamber design protects the measurement spot from unintended shading and minimizes disturbance of throughfall, thereby complying with high quality requirements of long-term observation studies and research infrastructures.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

1. Alves, B. J. R., Smith, K. A., Flores, R. A., Cardoso, A. S., Oliveira, W. R. D., Jantalia, C. P., Urquiaga, S., and Boddey, R. M.: Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils, Soil Biol. Biochem., 46, 129–135, 2012.

2. Ammann, C., Wolff, V., Marx, O., Brümmer, C., and Neftel, A.: Measuring the biosphere-atmosphere exchange of total reactive nitrogen by eddy covariance, Biogeosciences, 9, 4247–4261, https://doi.org/10.5194/bg-9-4247-2012, 2012.

3. Anthony, W. H., Hutchinson, G. L., and Livingston, G. P.: Chamber measurement of soil–atmosphere gas exchange: Linear vs. diffusion-based flux models, Soil Sci. Soc. Am. J., 59, 1308–1310, 1995.

4. Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B.E., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. C.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.

5. Brümmer, C., Brüggemann, N., Butterbach-Bahl, K., Falk, U., Szarzynski, J., Vielhauer, K., Wassmann, R., and Papen, H.: Soil-atmosphere exchange of N2O and NO in near-natural savanna and agricultural land in Burkina Faso (W. Africa), Ecosystems, 11, 582–600, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3