Measuring the biosphere-atmosphere exchange of total reactive nitrogen by eddy covariance

Author:

Ammann C.,Wolff V.,Marx O.,Brümmer C.,Neftel A.

Abstract

Abstract. The (net) exchange of reactive nitrogen (Nr) with the atmosphere is an important driver for ecosystem productivity and greenhouse gas exchange. The exchange of airborne Nr includes various trace compounds that usually require different specific measurement techniques, and up to now fast response instruments suitable for eddy covariance measurements are only available for few of these compounds. Here we present eddy covariance flux measurements with a recently introduced converter (TRANC) for the sum of all Nr compounds (∑Nr). Measurements were performed over a managed grassland field with phases of net emission and net deposition of ∑Nr and alternating dominance of oxidized (NOX) and reduced species (NH3). Spectral analysis of the eddy covariance data exhibited the existence of covariance function peaks at a reasonable time lag related to the sampling tube residence time under stationary conditions. Using ogive analysis, the high-frequency damping was quantified to 19%–26% for a low measurement height of 1.2 m and to about 10% for 4.8 m measurement height. ∑Nr concentrations and fluxes were compared to parallel NO and NO2 measurements by dynamic chambers and NH3 measurements by the aerodynamic gradient technique. The average concentration results indicate that the main compounds NO2 and NH3 were converted by the TRANC system with an efficiency of near 100%. With an optimised sample inlet also the fluxes of these compounds were recovered reasonably well including net deposition and net emission phases. The study shows that the TRANC system is suitable for fast response measurements of oxidized and reduced nitrogen compounds and can be used for continuous eddy covariance flux measurements of total reactive nitrogen.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3