Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events

Author:

Baumgaertner A. J. G.,Jöckel P.,Riede H.,Stiller G.,Funke B.

Abstract

Abstract. The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) has been extended by processes that parameterize particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In part 1, the EMAC parameterization for NOx produced in the upper atmosphere by low-energy electrons is presented. Here, we discuss production of NOy and HOx associated with Solar Proton Events (SPEs). A submodel that parameterizes the effects of precipitating protons, based on flux measurements by instruments on the IMP or GOES satellites, was added to the EMAC model. Production and transport of NOy and HOx, as well as effects on other chemical species and dynamics during the 2003 Halloween SPEs are presented. Comparisons with MIPAS/ENVISAT measurements of a number of species affected by the SPE are shown and discussed. There is good agreement for NO2, but a severe disagreement is found for N2O similar to other studies. We discuss the effects of an altitude dependence of the N/NO production rate on the N2O and NOy changes during the SPE. This yields a modified parameterization that shows mostly good agreement between MIPAS and model results for NO2, N2O, O3, and HOCl. With the ability of EMAC to relax the model meteorology to observations, accurate assessment of total column ozone loss is also possible, yielding a loss of approximately 10 DU at the end of November. Discrepancies remain for HNO3, N2O5, and ClONO2, which are likely a consequence from the missing cluster ion chemistry and ion-ion recombination in the EMAC model as well as known issues with the model's NOy partitioning.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference45 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3