Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NO<sub>x</sub> produced by low energy electrons

Author:

Baumgaertner A. J. G.,Jöckel P.,Brühl C.

Abstract

Abstract. The atmospheric chemistry general circulation model ECHAM5/MESSy1 has been extended by processes that parameterise particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In the companion paper, the ECHAM5/MESSy1 solar proton event parametrisation is discussed, while in the current paper we focus on low energy electrons (LEE) that produce NOx in the upper atmosphere. For the flux of LEE NOx into the top of the model domain a novel technique which can be applied to most atmospheric chemistry general circulation models has been developed and is presented here. The technique is particularly useful for models with an upper boundary between the stratopause and mesopause and therefore cannot directly incorporate upper atmospheric NOx production. The additional NOx source parametrisation is based on a measure of geomagnetic activity, the Ap index, which has been shown to be a good proxy for LEE NOx interannual variations. HALOE measurements of LEE NOx that has been transported into the stratosphere are used to develop a scaling function which yields a flux of NOx that is applied to the model top. We describe the implementation of the parametrisation as the submodel SPACENOX in ECHAM5/MESSy1 and discuss the results from test simulations. The NOx enhancements are shown to be in good agreement with independent measurements. Ap index data is available for almost one century, thus the parametrisation is suitable for simulations of the recent climate.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference32 articles.

1. Baumgaertner, A. J G., Jöckel, P., Riede, H., Brühl, C., Stiller, G., and Funke, B.: Energetic Particle Precipitation in ECHAM5/MESSy1, Part 2: Solar Proton Events, in preparation, Atmos. Chem. Phys. Discuss., 2009.

2. Brasseur, G P. and Solomon, S.: Aeronomy of the Middle Atmosphere, D. Reidel Publishing Company, 2nd revised edn., 1986.

3. Brühl, C., Steil, B., Stiller, G., Funke, B., and Jöckel, P.: Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 5585–5598, 2007.

4. Callis, L B. and Lambeth, J D.: NOy formed by precipitating electron events in 1991 and 1992: Descent into the stratosphere as observed by ISAMS, Geophys. Res. Lett., 25, 1875–1878, \\doi10.1029/98GL01219, 1998.

5. Callis, L B., Natarajan, M., Lambeth, J D., and Baker, D N.: Solar - atmospheric coupling by electrons (SOLACE). 2. Calculated stratospheric effects of precipitating electrons, 1979–1988, J. Geophys. Res., 103, 28421–28438, \\doi10.1029/98JD02407, 1998.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3