Simulating low frequency changes in atmospheric CO<sub>2</sub> during the last 740 000 years

Author:

Köhler P.ORCID,Fischer H.

Abstract

Abstract. Atmospheric CO2 measured in Antarctic ice cores shows a natural variability of 80 to 100 ppmv during the last four glacial cycles and variations of approximately 60 ppmv in the two cycles between 410 and 650 kyr BP. We here use various paleo-climatic records from the EPICA Dome C Antarctic ice core and from oceanic sediment cores covering the last 740 kyr to force the ocean/atmosphere/biosphere box model of the global carbon cycle BICYCLE in a forward mode over this time in order to interpret the natural variability of CO2. Our approach is based on the previous interpretation of carbon cycle variations during Termination I (Köhler et al., 2005a). In the absense of a process-based sediment module one main simplification of BICYCLE is that carbonate compensation is approximated by the temporally delayed restoration of deep ocean [CO32−]. Our results match the low frequency changes in CO2 measured in the Vostok and the EPICA Dome C ice core for the last 650 kyr BP (r2≈0.75). During these transient simulations the carbon cycle reaches never a steady state due to the ongoing variability of the overall carbon budget caused by the time delayed response of the carbonate compensation to other processes. The average contributions of different processes to the rise in CO2 during Terminations I to V and during earlier terminations are: the rise in Southern Ocean vertical mixing: 36/22 ppmv, the rise in ocean temperature: 26/11 ppmv, iron limitation of the marine biota in the Southern Ocean: 20/14 ppmv, carbonate compensation: 15/7 ppmv, the rise in North Atlantic deep water formation: 13/0 ppmv, the rise in gas exchange due to a decreasing sea ice cover: −8/−7 ppmv, sea level rise: −12/−4 ppmv, and rising terrestrial carbon storage: −13/−6 ppmv. According to our model the smaller interglacial CO2 values in the pre-Vostok period prior to Termination V are mainly caused by smaller interglacial Southern Ocean SST and an Atlantic THC which stayed before MIS 11 (before 420 kyr BP) in its weaker glacial circulation mode.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3